1 |
WANG Chongchen, LI Jianrong, Xiuliang LÜ,et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science,2014,7(9):2831-2867. doi:10.1039/c4ee01299b
doi: 10.1039/c4ee01299b
URL
|
2 |
MOUSAVINIA S E, HAJATI S, GHAEDI M,et al. Novel nanorose-like Ce(Ⅲ)-doped and undoped Cu(Ⅱ)-biphenyl-4,4-dicarboxylic acid〔Cu(Ⅱ)-Bpdca〕 moss as visible light photocatalysts:Synthesis,characterization,photodegradation of toxic dyes and optimization[J]. Physical Chemistry Chemical Physics,2016,18:11278-11287. doi:10.1039/c6cp00910g
doi: 10.1039/c6cp00910g
URL
|
3 |
ZHANG Ming, WANG Liwen, ZENG Tianyu,et al. Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visibl elight[J]. Dalton Transactions,2018,47(12):4251-4258. doi:10.1039/c8dt00156a
doi: 10.1039/c8dt00156a
URL
|
4 |
ALVARO M, CARBONELL E, FERRER B,et al. Semiconductor behavior of a metal-organic framework(MOF)[J]. Chemistry,2010,13(18):5106-5112.
|
5 |
LIU Leilei, YU Caixia, DU Jimin,et al. Construction of five Zn(Ⅱ)/Cd(Ⅱ) coordination polymers derived from a new linear carboxylate/pyridyl ligand:Design,synthesis,and photocatalytic properties[J]. Dalton Transactions,2016,45(31):12352-12361. doi:10.1039/c6dt02312f
doi: 10.1039/c6dt02312f
URL
|
6 |
刘兴燕,熊成,徐永港,等. MOFs在光催化降解废水中有机污染物方面的研究进展[J]. 应用化工,2019,48(1):226-230. doi:10.3969/j.issn.1671-3206.2019.01.053
doi: 10.3969/j.issn.1671-3206.2019.01.053
URL
|
|
LIU Xingyan, XIONG Cheng, XU Yonggang,et al. Progress in photocatalytic degradation of organic pollutants in wastewater by metal-organic frameworks[J]. Applied Chemical Industry,2019,48(1):226-230. doi:10.3969/j.issn.1671-3206.2019.01.053
doi: 10.3969/j.issn.1671-3206.2019.01.053
URL
|
7 |
熊富忠,温东辉. 难降解工业废水高效处理技术与理论的新进展[J]. 环境工程,2021,39(11):1-16.
|
|
XIONG Fuzhong, WEN Donghui. Advances of highly-efficient technologies and theories for refractory industrial wastewater treatment[J]. Environmental Engineering,2021,39(11):1-16.
|
8 |
邓永飞,刘涛,吴海铨,等. 食品工业废水处理技术研究进展[J]. 工业水处理,2021,41(10):1-8.
URL
|
|
DENG Yongfei, LIU Tao, WU Haiquan,et al. Research progress of wastewater treatment technology in food industry[J]. Industrial Water Treatment,2021,41(10):1-8.
URL
|
9 |
李天鹏,荆国华,周作明. 微电解技术处理工业废水的研究进展及应用[J]. 工业水处理,2009,29(10):9-13. doi:10.3969/j.issn.1005-829X.2009.10.003
doi: 10.3969/j.issn.1005-829X.2009.10.003
URL
|
|
LI Tianpeng, JING Guohua, ZHOU Zuoming. Research on micro-electrolysis technology and its application to industrial wastewater treatment[J]. Industrial Water Treatment,2009,29(10):9-13. doi:10.3969/j.issn.1005-829X.2009.10.003
doi: 10.3969/j.issn.1005-829X.2009.10.003
URL
|
10 |
JAAFARZADEH N, TAKDASTAN A, JORFI S,et al. The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment[J]. Journal of Molecular Liquids,2018,256:462-470. doi:10.1016/j.molliq.2018.02.047
doi: 10.1016/j.molliq.2018.02.047
URL
|
11 |
PIRHASHEMI M, HABIBI-YANGJEH A. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants[J]. Journal of Colloid and Interface Science,2017,491:216-229. doi:10.1016/j.jcis.2016.12.044
doi: 10.1016/j.jcis.2016.12.044
URL
|
12 |
WOOD R J, SIDNELL T, ROSS I,et al. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation[J]. Ultrasonics Sonochemistry,2020,68:105196. doi:10.1016/j.ultsonch.2020.105196
doi: 10.1016/j.ultsonch.2020.105196
URL
|
13 |
JUN B M, HAN J, CHANG M P,et al. Ultrasonic degradation of selected dyes using Ti3C2T x MXene as a sonocatalyst[J]. Ultrasonics Sonochemistry,2020,64:104993. doi:10.1016/j.ultsonch.2020.104993
doi: 10.1016/j.ultsonch.2020.104993
URL
|
14 |
LI Li, HAN Shasha, ZHAO Sengqun,et al. Chitosan modified metal-organic frameworks as a promising carrier for oral drug delivery[J]. RSC Advances,2020,10:45130. doi:10.1039/d0ra08459j
doi: 10.1039/d0ra08459j
URL
|
15 |
WANG Xin, YU Sheng, LI Zihao,et al. Fabrication Z-scheme heterojunction of Ag2O/ZnWO4 with enhanced sonocatalytic performances for meloxicam decomposition:Increasing adsorption and generation of reactive species[J]. Chemical Engineering Journal,2021,405:126922. doi:10.1016/j.cej.2020.126922
doi: 10.1016/j.cej.2020.126922
URL
|
16 |
HE Lingling, GUO Yuxuan, ZHU Yao,et al. Fabrication of Ag2O/MgWO4 p-n heterojunction with enhanced sonocatalytic decomposition performance for Rhodamine B[J]. Materials Letters,2021,284:128927. doi:10.1016/j.matlet.2020.128927
doi: 10.1016/j.matlet.2020.128927
URL
|
17 |
HE Lingling, LIU Xianping, WANG Yongxia,et al. Sonochemical degradation of methyl orange in the presence of Bi2WO6:Effect of operating parameters and the generated reactive oxygen species[J]. Ultrasonics Sonochemistry,2016,33:90-98. doi:10.1016/j.ultsonch.2016.04.028
doi: 10.1016/j.ultsonch.2016.04.028
URL
|
18 |
杜栋栋. 复杂环境中超声降解有机污染物的协同效应研究[D]. 西安:陕西师范大学,2019.
|
|
DU Dongdong. Study on synergistic effect of ultrasonic degradation of organic pollutants in complex environment[D]. Xi’an:Shaanxi Normal University,2019.
|
19 |
杨利娟. 超声催化降解混合酚类污染物[D]. 石家庄:河北师范大学,2017.
|
|
YANG Lijuan. Ultrasonic catalytic degradation of mixed phenolic pollutants[D]. Shijiazhuang:Hebei Normal University,2017.
|
20 |
SADEGHI M, ZABARDASTI A, FARHADI S,et al. Immobilization of Cr-MIL-101 over the NiO/13X zeolite nanocomposite towards ultrasound-assisted destruction of organic dyes in aqueous media[J]. Journal of Water Process Engineering,2019,32:100946. doi:10.1016/j.jwpe.2019.100946
doi: 10.1016/j.jwpe.2019.100946
URL
|
21 |
刘明明. 基于类沸石咪唑酯骨架材料ZIF-8的催化性能研究[D]. 太原:太原理工大学,2014.
|
|
LIU Mingming. Catalytic properties based on zeolitic imidazolate framework-8[D]. Taiyuan:Taiyuan University of Technology,2014.
|
22 |
LIU Jinchen, Keskin S, Sholl D S,et al. Molecular simulations and theoretical predictions for adsorption and diffusion of CH4/H2 and CO2/CH4 mixtures in ZIFs[J]. The Journal of Physical Chemistry C,2011,115(25):12560-12566. doi:10.1021/jp203053h
doi: 10.1021/jp203053h
URL
|
23 |
黄阳. 钛基金属-有机框架材料的形貌调控及其催化性能研究[D]. 信阳:信阳师范学院,2020.
|
|
HUANG Yang. Morphology-controlled syntheses of Ti-based metal-organic frameworks and their catalytic properties[D]. Xinyang:Xinyang Normal University,2020.
|
24 |
RAD T S, ANSARIAN Z, KHATAEE A,et al. N-doped graphitic carbon as a nanoporous MOF-derived nanoarchitecture for the efficient sonocatalytic degradation process[J]. Separation and Purification Technology,2020,256:117811. doi:10.1016/j.seppur.2020.117811
doi: 10.1016/j.seppur.2020.117811
URL
|
25 |
NIRUMAND L, FARHADI S, ZABARDASTI A,et al. Synthesis and sonocatalytic performance of a ternary magnetic MIL-101(Cr)/RGO/ZnFe2O4 nanocomposite for degradation of dye pollutants[J]. Ultrasonics Sonochemistry,2018,42:647-658. doi:10.1016/j.ultsonch.2017.12.033
doi: 10.1016/j.ultsonch.2017.12.033
URL
|
26 |
SADEGHI M, FARHADI S, ZABARDASTI A. A novel CoFe2O4@Cr-MIL-101/Y zeolite ternary nanocomposite as a magnetically separable sonocatalyst for efficient sonodegradation of organic dye contaminants from water[J]. RSC Advances,2020,10:10082-10096. doi:10.1039/d0ra00877j
doi: 10.1039/d0ra00877j
URL
|
27 |
SAJJADI S, KHATAEE A, BAGHERI N,et al. Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nano-composite under ultrasound irradiation-science direct[J]. Journal of Water Process Engineering,2019,77:280-290. doi:10.1016/j.jiec.2019.04.049
doi: 10.1016/j.jiec.2019.04.049
URL
|
28 |
TIAN Haixin, ZHA Miao, MA Lixiao,et al. Metal-organic frameworks based on tetra(imidazole) and multicarboxylate:Syntheses,structures,luminescence,photocatalytic and sonocatalytic degradation of methylene blue[J]. Polyhedron,2021,197:115052. doi:10.1016/j.poly.2021.115052
doi: 10.1016/j.poly.2021.115052
URL
|
29 |
MOSLEH S, RAHIMI M R. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process:Synergistic effect and optimization study[J]. Ultrasonics Sonochemistry,2017,35(Pt A):449-457. doi:10.1016/j.ultsonch.2016.10.025
doi: 10.1016/j.ultsonch.2016.10.025
URL
|
30 |
JUN B M, KIM S,HEO J,et al. Enhanced sonocatalytic degradation of carbamazepine and salicylic acid using a metal-organic framework[J]. Ultrasonics Sonochemistry,2019,56:174-182. doi:10.1016/j.ultsonch.2019.04.019
doi: 10.1016/j.ultsonch.2019.04.019
URL
|
31 |
SISI A J, FATHINIA M, KHATAEE A,et al. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process:Mechanism and ecotoxicological analysis[J]. Journal of Molecular Liquids,2020,308:113018. doi:10.1016/j.molliq.2020.113018
doi: 10.1016/j.molliq.2020.113018
URL
|
32 |
SISI A J, KHATAEE A, FATHINIA M,et al. Ultrasonic-assisted degradation of a triarylmethane dye using combined peroxydisulfate and MOF-2 catalyst:Synergistic effect and role of oxidative species[J]. Journal of Molecular Liquids,2019,297:111838. doi:10.1016/j.molliq.2019.111838
doi: 10.1016/j.molliq.2019.111838
URL
|
33 |
KHOSHNAMVAND N, JAFARI A, KAMAREHIE B,et al. Optimization of adsorption and sonocatalytic degradation of fluoride by zeolitic imidazole framework-8 (ZIF-8) using RSM-CCD[J]. Desalination and Water Treatment,2019,171:270-280. doi:10.5004/dwt.2019.24775
doi: 10.5004/dwt.2019.24775
URL
|
34 |
HOSSEINPOUR S A, KARIMIPOUR G, GHAEDI M,et al. Use of metal composite MOF-5-Ag2O-NPs as an adsorbent for the removal of Auramine O dye under ultrasound energy conditions[J]. Applied Organometallic Chemistry,2018,32(2):e4007. doi:10.1002/aoc.4007
doi: 10.1002/aoc.4007
URL
|
35 |
MOURABET M, RHILASSI A EL, BOUJAADY H EL,et al. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite(HAp) using response surface methodology[J]. Journal of Saudi Chemical Society,2015,19(6):603-615. doi:10.1016/j.jscs.2012.03.003
doi: 10.1016/j.jscs.2012.03.003
URL
|