1 |
蔡玉福,周艳军,路君凤,等. 碱活化蒙脱土负载铁类Fenton体系去除亚甲基蓝[J]. 复合材料学报,2022:1-12.
|
|
CAI Yufu, ZHOU Yanjun, LU Junfeng,et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst[J]. Acta Materiae Compositae Sinica,2022:1-12.
|
2 |
侯琳萌,清华,吉庆华. 类Fenton反应的催化剂、原理与机制研究进展[J]. 环境化学,2022,41(6):1843-1855.
|
|
HOU Linmeng,QINGHUA, JI Qinghua. Research progress on catalysts,principles and mechanisms of Fenton-like reactions[J]. Environmental Chemistry,2022,41(6):1843-1855.
|
3 |
于子扬,于贺伟,赵改菊,等.Fenton铁泥资源化利用研究进展[J]. 无机盐工业,2022,54(6):31-37.
|
|
YU Ziyang, YU Hewei, ZHAO Gaiju,et al. Research progress on resource utilization of Fenton sludge[J]. Inorganic Chemicals Industry,2022,54(6):31-37.
|
4 |
GUO Sheng, YANG Zhixiong, WEN Zhipan,et al. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B:Role of sulfur and mesoporous structure[J]. Journal of Colloid and Interface Science, 2018, 532:441-448. doi: 10.1016/j.jcis.2018.08.005
|
5 |
YE Guirong, ZHOU Jinghong, HUANG Renting,et al. Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107242. doi: 10.1016/j.jece.2022.107242
|
6 |
LI Jie, PAN Lanjia, YU Guangwei,et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation[J]. Science of the Total Environment, 2019, 654:1284-1292. doi: 10.1016/j.scitotenv.2018.11.013
|
7 |
GAN Quan, HOU Huijie, LIANG Sha,et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol[J]. Science of the Total Environment, 2020, 725:138299. doi: 10.1016/j.scitotenv.2020.138299
|
8 |
LIANG Chenju, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11):5558-5562. doi: 10.1021/ie9002848
|
9 |
WANG Jianlong, WANG Shizong. Reactive species in advanced oxidation processes:Formation,identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401:126158. doi: 10.1016/j.cej.2020.126158
|
10 |
WANG Yanshan, PENG Wenzhao, WANG Jun,et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor[J]. Applied Catalysis B:Environmental, 2022, 310:121342. doi: 10.1016/j.apcatb.2022.121342
|
11 |
YU Yangyang, QUAN Wenzhu, CAO Yuanyuan,et al. Boosting the singlet oxygen production from H 2O 2 activation with highly dispersed Co-N-graphene for pollutant removal[J]. RSC Advances, 2022, 12(28):17864-17872. doi: 10.1039/d2ra02491h
|
12 |
ZHANG Peng, SUN Hongwen, YU Li,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars:Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244:217-224. doi: 10.1016/j.jhazmat.2012.11.046
|
13 |
GAO Yujie, ZHANG Jia, CHEN Chaowen,et al. Functional biochar fabricated from waste red mud and corn straw in China for acidic dye wastewater treatment[J]. Journal of Cleaner Production, 2021, 320:128887. doi: 10.1016/j.jclepro.2021.128887
|
14 |
XI Junhua, XIA Hong, NING Xingming,et al. Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation[J]. Small(Weinheim an Der Bergstrasse,Germany), 2019, 15(43):e1902744. doi: 10.1002/smll.201902744
|
15 |
LENG Lijian, XIONG Qin, YANG Lihong,et al. An overview on engineering the surface area and porosity of biochar[J]. Science of the Total Environment, 2021, 763:144204. doi: 10.1016/j.scitotenv.2020.144204
|
16 |
LIANG Lan, CHEN Guanyi, LI Ning,et al. Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide[J]. Journal of Colloid and Interface Science, 2022, 608:1983-1998. doi: 10.1016/j.jcis.2021.10.150
|
17 |
LU Jian, ZHOU Yi, LEI Juying,et al. Fe 3O 4/graphene aerogels:A stable and efficient persulfate activator for the rapid degradation of malachite green[J]. Chemosphere, 2020, 251:126402. doi: 10.1016/j.chemosphere.2020.126402
|
18 |
YU Yang, LI Ning, WANG Chuanbin,et al. Iron cobalt and nitrogen co-doped carbonized wood sponge for peroxymonosulfate activation:Performance and internal temperature-dependent mechanism[J]. Journal of Colloid and Interface Science, 2022, 619:267-279. doi: 10.1016/j.jcis.2022.03.141
|
19 |
LI Ning, LI Rui, DUAN Xiaoguang,et al. Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon[J]. Environmental Science & Technology, 2021, 55(23):16163-16174. doi: 10.1021/acs.est.1c06244
|
20 |
HU Wanrong, XIE Yi, LU Shan,et al. One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants[J]. Science of the Total Environment, 2019, 680:51-60. doi: 10.1016/j.scitotenv.2019.05.098
|
21 |
CUI Quantao, LI Yonggan, CHAI Senyou,et al. Enhanced catalytic activation of H 2O 2 by CNTs/SCH through rapid Fe(Ⅲ)/Fe(Ⅱ) redox couple circulation:Insights into the role of functionalized multiwalled CNTs[J]. Separation and Purification Technology, 2022, 282:120000. doi: 10.1016/j.seppur.2021.120000
|
22 |
CHEN Cheng, ZHOU Lingzhi, ZHANG Huanjing,et al. Eco-friendly lignin-based N/C cocatalysts for ultrafast cyclic Fenton-like reactions in water purification via graphitic N-mediated interfacial electron transfer[J]. ACS ES&T Engineering, 2023, 3(2):248-259. doi: 10.1021/acsestengg.2c00287
|
23 |
CHEN Qiuqiang, WU Pingxiao, LI Yuanyuan,et al. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation[J]. Journal of Hazardous Materials, 2009, 168(2/3):901-908. doi: 10.1016/j.jhazmat.2009.02.107
|
24 |
DENG Jing, FENG Shanfang, ZHANG Kejia,et al. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co 3O 4 for the degradation of chloramphenicol at neutral pH[J]. Chemical Engineering Journal, 2017, 308:505-515. doi: 10.1016/j.cej.2016.09.075
|
25 |
WANG Yanbin, ZHAO Hongying, ZHAO Guohua.Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2015, 164:396-406. doi: 10.1016/j.apcatb.2014.09.047
|
26 |
HUANG Ting, ZHANG Guangming, ZHANG Nan,et al. Fe 0-H 2O 2 for advanced treatment of citric acid wastewater:Detailed study of catalyst after several times use[J]. Chemical Engineering Journal, 2018, 336:233-240. doi: 10.1016/j.cej.2017.11.147
|