1 |
|
|
LU Shiying, ZOU Mingqiang. The hazards of frequent inedible colorants used in foods and their detection methods[J]. China Instrumentation, 2009(8):45-50. doi: 10.3969/j.issn.1005-2852.2009.08.007
|
2 |
SAMSAMI S, MOHAMADIZANIANI M, SARRAFZADEH M H,et al. Recent advances in the treatment of dye-containing wastewater from textile industries:Overview and perspectives[J]. Process Safety and Environmental Protection, 2020, 143:138-163. doi: 10.1016/j.psep.2020.05.034
|
3 |
HU Mengqiao, XING Zipeng, CAO Yan,et al. Ti 3+ self-doped mesoporous black TiO 2/SiO 2/g-C 3N 4 sheets heterojunctions as remarkable visible-light driven photocatalysts[J]. Applied Catalysis B:Environmental, 2018, 226:499-508. doi: 10.1016/j.apcatb.2017.12.069
|
4 |
LI Yanzhou, FU Zhihua, XU Gang. Metal-organic framework nanosheets:Preparation and applications[J]. Coordination Chemistry Reviews, 2019, 388:79-106. doi: 10.1016/j.ccr.2019.02.033
|
5 |
LIU Xiaomei, TANG Bing, LONG Jilan,et al. The development of MOFs-based nanomaterials in heterogeneous organocatalysis[J]. Science Bulletin, 2018, 63(8):502-524. doi: 10.1016/j.scib.2018.03.009
|
6 |
JIANG Danni, CHEN Ming, WANG Han,et al. The application of different typological and structural MOFs-based materials for the dyes adsorption[J]. Coordination Chemistry Reviews, 2019, 380:471-483. doi: 10.1016/j.ccr.2018.11.002
|
7 |
PENG Yang, KRUNGLEVICIUTE V, ERYAZICI I,et al. Methane storage in metal-organic frameworks:Current records,surprise findings,and challenges[J]. Journal of the American Chemical Society, 2013, 135(32):11887-11894. doi: 10.1021/ja4045289
|
8 |
DUAN Xing, WANG Huizhen, JI Zhenguo,et al. A novel metal-organic framework for high storage and separation of acetylene at room temperature[J]. Journal of Solid State Chemistry, 2016, 241:152-156. doi: 10.1016/j.jssc.2016.06.015
|
9 |
SUN Chunyi, QIN Chao, WANG Xinlong,et al. Metal-organic frameworks as potential drug delivery systems[J]. Expert Opinion on Drug Delivery, 2013, 10(1):89-101. doi: 10.1517/17425247.2013.741583
|
10 |
LIANG Chenju, HUANG C F, CHEN Yanyun. Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15):4091-4100. doi: 10.1016/j.watres.2008.06.022
|
11 |
HU Jinshan, ZHANG Pengfei, AN Weijia,et al. In-situ Fe-doped g-C 3N 4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B:Environmental, 2019, 245:130-142. doi: 10.1016/j.apcatb.2018.12.029
|
12 |
FÉREY G, MELLOT-DRAZNIEKS C, SERRE C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042. doi: 10.1126/science.1116275
|
13 |
SHI Li, WANG Tao, ZHANG Huabin,et al. An amine-functionalized iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J]. Advanced Science, 2015, 2(3):1500006. doi: 10.1002/advs.201500006
|
14 |
XIAO He, ZHANG Wenyao, YAO Qiushi,et al. Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich,ultrafine ZnO nanosheets with high photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 244:719-731. doi: 10.1016/j.apcatb.2018.11.026
|
15 |
JIANG Danni, XU Piao, WANG Han,et al. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants[J]. Coordination Chemistry Reviews, 2018, 376:449-466. doi: 10.1016/j.ccr.2018.08.005
|
16 |
|
|
SHI Chenyang, FU Du, WANG Juan,et al. Single-atom Cu supported on carbon nitride for activation of persulfate under visible light irradiation[J]. Scientia Sinica:Chimica, 2021, 51(8):1104-1112. doi: 10.1360/ssc-2021-0043
|
17 |
ONG W J, TAN L L, NG Y H,et al. Graphitic carbon nitride(g-C 3N 4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
|
18 |
FU Junwei, YU Jiaguo, JIANG Chuanjia,et al. g-C 3N 4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3):1701503. doi: 10.1002/aenm.201701503
|
19 |
WANG Chongchen, YI Xiaohong, WANG Peng. Powerful combination of MOFs and C 3N 4 for enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 247:24-48. doi: 10.1016/j.apcatb.2019.01.091
|
20 |
MA Xiaohua, YANG Zhe, YAO Zhikan,et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. Journal of Membrane Science, 2017, 525:269-276. doi: 10.1016/j.memsci.2016.11.015
|
21 |
|
|
WANG Lijuan, CAI Jun, WANG Ying,et al. Activation of PDS by graphitic carbon nitride supported with NiFe layered double hydroxide for the degradation of dye[J]. Journal of Shenzhen University:Science and Engineering, 2021, 38(3):264-271. doi: 10.3724/sp.j.1249.2021.03264
|
22 |
LIU Bingkun, WU Yajun, HAN Xiaole,et al. Facile synthesis of g-C 3N 4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(20):17591-17601. doi: 10.1007/s10854-018-9862-x
|
23 |
DE GODOI F C, RODRIGUEZ-CASTELLON E, GUIBAL E,et al. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles[J]. Chemical Engineering Journal, 2013, 234:423-429. doi: 10.1016/j.cej.2013.09.006
|
24 |
DU Sinan, LIAO Zhijian, QIN Zhenli,et al. Polydopamine microparticles as redox mediators for catalytic reduction of methylene blue and rhodamine B[J]. Catalysis Communications, 2015, 72:86-90. doi: 10.1016/j.catcom.2015.09.020
|
25 |
WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe 3O 4 nanoparticles as a function of temperature[J]. Applied Surface Science, 2014, 303:6-13. doi: 10.1016/j.apsusc.2014.02.006
|
26 |
GONG Yan, YANG Bo, ZHANG Hui,et al. A g-C 3N 4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation[J]. Journal of Materials Chemistry A, 2018, 6(46):23703-23711. doi: 10.1039/c8ta07915c
|
27 |
LIANG Chenju, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11):5558-5562. doi: 10.1021/ie9002848
|
28 |
DONG Chengdi, TSAI M L, CHEN C W,et al. Heterogeneous persulfate oxidation of BTEX and MTBE using Fe 3O 4-CB magnetite composites and the cytotoxicity of degradation products[J]. International Biodeterioration & Biodegradation, 2017, 124:109-118. doi: 10.1016/j.ibiod.2017.05.004
|
29 |
梁贺,刘锐平,安晓强,等. 铁铜双金属有机骨架MIL-101(Fe,Cu)活化双氧水降解染料性能[J]. 环境科学,2020,41(10):4607-4614.
|
|
LIANG He, LIU Ruiping, AN Xiaoqiang,et al. Activating efficiency of iron-copper bimetallic organic framework MIL-101(Fe,Cu) toward H2O2 for degradation of dyes[J]. Environmental Science,2020,41(10):4607-4614.
|