1 |
闫琦, 刘培培, 张娇娇, 等. 畜禽粪便中残留四环素类抗生素的研究概况[J]. 家畜生态学报, 2018, 39 (5): 80- 86.
doi: 10.3969/j.issn.1673-1182.2018.05.019
|
2 |
徐向月, 马文瑾, 安博宇, 等. 四环素类抗生素在环境中的风险评估研究进展[J]. 中国畜牧兽医, 2020, 47 (3): 948- 957.
URL
|
3 |
曾萍, 刘诗月, 张俊珂, 等. 芬顿法深度处理生物处理排水中的四环素抗性基因[J]. 中国环境科学, 2017, 37 (9): 3315- 3323.
doi: 10.3969/j.issn.1000-6923.2017.09.014
|
4 |
Michael I , Rizzo L , McArdell C S , et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review[J]. Water Research, 2013, 47 (3): 957- 995.
doi: 10.1016/j.watres.2012.11.027
|
5 |
Guo Changsheng , Wang Kai , Hou Song , et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323, 710- 718.
doi: 10.1016/j.jhazmat.2016.10.041
|
6 |
刘文芳, 周汝利, 王燕子. 光催化剂TiO2改性的研究进展[J]. 化工进展, 2016, 35 (8): 2446- 2454.
URL
|
7 |
Gong Jianyu , Lee C S , Chang Y Y , et al. Novel self-assembled bimetallic structure of Bi/Fe0: The oxidative and reductive degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine(RDX)[J]. Journal of Hazardous Materials, 2015, 286, 107- 117.
doi: 10.1016/j.jhazmat.2014.10.063
|
8 |
Drache M , Roussel P , Wignacourt J P . Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3[J]. Chemical Reviews, 2007, 107 (1): 80- 96.
doi: 10.1021/cr050977s
|
9 |
王永剑, 张亮, 赵朝成, 等. MoS2/Bi2S3异质结光催化剂的制备及其光催化性能[J]. 化工环保, 2018, 38 (3): 305- 310.
doi: 10.3969/j.issn.1006-1878.2018.03.010
|
10 |
Huang Cong , Chen Leilei , Li Haipu , et al. Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation[J]. RSC Advances, 2019, 9 (48): 27768- 27779.
doi: 10.1039/C9RA04445K
|
11 |
Yang Zixin , Shen Min , Dai Ke , et al. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2018, 430, 505- 514.
doi: 10.1016/j.apsusc.2017.08.072
|
12 |
Lu Yanjie , Shang Huishan , Shi Fengjuan , et al. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies[J]. Journal of Physics and Chemistry of Solids, 2015, 85, 44- 50.
doi: 10.1016/j.jpcs.2015.04.016
|
13 |
Yin Bingxin , Fang Zhenyuan , Luo Bifu , et al. Facile preparation of Bi24O31Cl10 nanosheets for visible-light-driven photocatalytic degradation of tetracycline hydrochloride[J]. Catalysis Letters, 2017, 147 (8): 2167- 2172.
doi: 10.1007/s10562-017-2115-4
|
14 |
Wu Gongjuan , Zhao Yan , Li Yawen , et al. Facile aqueous synthesis of Bi4O5Br2 nanosheets for improved visible-light photocatalytic activity[J]. Ceramics International, 2018, 44 (5): 5392- 5401.
doi: 10.1016/j.ceramint.2017.12.168
|
15 |
Yang Jian , Liang Yujun , Li Kai , et al. Design of 3D flowerlike BiOClxBr1-x nanostructure with high surface area for visible light photocatalytic activities[J]. Journal of Alloys and Compounds, 2017, 725, 1144- 1157.
doi: 10.1016/j.jallcom.2017.07.213
|
16 |
Bai Jinwu , Li Yun , Liu Jiandang , et al. 3D Bi2MoO6 hollow mesoporous nanostructures with high photodegradation for tetracycline[J]. Microporous and Mesoporous Materials, 2017, 240, 91- 95.
doi: 10.1016/j.micromeso.2016.11.008
|
17 |
Wang Min , Guo Pengyao , Chai T , et al. Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol solvothermal method[J]. Journal of Alloys and Compounds, 2017, 691, 8- 14.
doi: 10.1016/j.jallcom.2016.08.198
|
18 |
Camacho-Escobar L , Palma-Goyes R E , Ortiz-Landeros J , et al. Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2020, 521, 146357.
doi: 10.1016/j.apsusc.2020.146357
|
19 |
Opoku F , Govender K K , van Sittert C G C E , et al. Insights into the photocatalytic mechanism of mediatorfree direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study[J]. Applied Surface Science, 2018, 427, 487- 498.
doi: 10.1016/j.apsusc.2017.09.019
|
20 |
Yu Lei , Fang Wenjian , Liu Junying , et al. BixY1-xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2017, 42 (10): 6519- 6525.
doi: 10.1016/j.ijhydene.2017.01.001
|
21 |
Li Wenqi , Ding Xingeng , Wu Huating , et al. Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities[J]. Applied Surface Science, 2018, 447, 636- 647.
doi: 10.1016/j.apsusc.2018.04.039
|
22 |
Ding Junping , Wang Huanchun , Xu Haomin , et al. Synthesis and broadband spectra photocatalytic properties of Bi2O2(CO3)1-xSx[J]. Materials(Basel, Switzerland), 2018, 11 (5): E791.
URL
|
23 |
Jia Jiankui , Wang Qiong , Wang Yuping . Synthesis of BixTiyOz/TiO2 heterojunction with enhanced visible-light photocatalytic activity and mechanism insight[J]. Journal of Alloys and Compounds, 2019, 809, 151791.
doi: 10.1016/j.jallcom.2019.151791
|
24 |
Xu Jian , Qin Chuanxiang , Huang Yanlin , et al. Narrow band gap and visible light-driven photocatalysis of V-doped Bi6Mo2O15 nanoparticles[J]. Applied Surface Science, 2017, 396, 1403- 1410.
doi: 10.1016/j.apsusc.2016.11.174
|
25 |
Nezamzadeh-Ejhieh A , Shirzadi A . Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline[J]. Chemosphere, 2014, 107, 136- 144.
doi: 10.1016/j.chemosphere.2014.02.015
|
26 |
Yu Hongbin , Wang Danyang , Zhao Bin , et al. Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction[J]. Separation and Purification Technology, 2020, 237, 116365.
doi: 10.1016/j.seppur.2019.116365
|
27 |
Huang Danlian , Li Jing , Zeng Guangming , et al. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chemical Engineering Journal, 2019, 375, 121991.
doi: 10.1016/j.cej.2019.121991
|
28 |
Gaya U I , Abdullah A H . Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9 (1): 1- 12.
doi: 10.1016/j.jphotochemrev.2007.12.003
|
29 |
Ahmed S , Rasul M G , Martens W N , et al. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments[J]. Desalination, 2010, 261 (1/2): 3- 18.
URL
|
30 |
Fallahi Motlagh H , Haghighi M , Shabani M . Sono-solvothermal fabrication of ball-flowerlike Bi2O7Sn2-Bi7O9I3 nanophotocatalyst with efficient solar-light-driven activity for degradation of antibiotic tetracycline[J]. Solar Energy, 2019, 180, 25- 38.
doi: 10.1016/j.solener.2019.01.021
|
31 |
Heidari S , Haghighi M , Shabani M . Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution[J]. Ultrasonics Sonochemistry, 2018, 43, 61- 72.
doi: 10.1016/j.ultsonch.2018.01.001
|
32 |
Shanavas S , Priyadharsan A , Gkanas E I , et al. High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism[J]. Journal of Industrial and Engineering Chemistry, 2019, 72, 512- 528.
doi: 10.1016/j.jiec.2019.01.008
|
33 |
Niu Junfeng , Ding Shiyuan , Zhang Liwen , et al. Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: Kinetics, mechanisms and toxicity assessment[J]. Chemosphere, 2013, 93 (1): 1- 8.
doi: 10.1016/j.chemosphere.2013.04.043
|
34 |
Liu Jianchang , Hu Zheng , Li Zhenlu , et al. Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2019, 129, 61- 70.
URL
|
35 |
Yang Yang , Zeng Zhuotong , Zhang Chen , et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal, 2018, 349, 808- 821.
doi: 10.1016/j.cej.2018.05.093
|
36 |
Khodaeipour M , Haghighi M , Shabani M , et al. Influence of fuel type and microwave combustion on in situ fabrication of BimOnBrz mixed-phase nanostructured photocatalyst: Effective sun-light photo-response ability in tetracycline degradation[J]. Journal of Hazardous Materials, 2020, 393, 122462.
doi: 10.1016/j.jhazmat.2020.122462
|
37 |
Wang Dadao , Li Jian , Xu Zhifeng , et al. Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+: Adsorption and photocatalytic mechanisms[J]. Journal of Colloid and Interface Science, 2019, 533, 344- 357.
doi: 10.1016/j.jcis.2018.08.089
|
38 |
Xiao Xin , Hu Ruiping , Liu Chao , et al. Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride[J]. Chemical Engineering Journal, 2013, 225, 790- 797.
doi: 10.1016/j.cej.2013.03.103
|
39 |
Wu Miaomiao , Xu Dongbo , Luo Bifu , et al. Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline[J]. Materials Letters, 2015, 161, 45- 48.
doi: 10.1016/j.matlet.2015.06.091
|
40 |
Ren Ao , Liu Chunbo , Hong Yuanzhi , et al. Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures[J]. Chemical Engineering Journal, 2014, 258, 301- 308.
doi: 10.1016/j.cej.2014.07.071
|
41 |
Cheng Juan , Shen Yi , Chen Kuan , et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation[J]. Chinese Journal of Catalysis, 2018, 39 (4): 810- 820.
doi: 10.1016/S1872-2067(17)63004-3
|
42 |
Ma Yi , Lv P , Duan Fang , et al. Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 834, 155158.
doi: 10.1016/j.jallcom.2020.155158
|
43 |
Ruan Xiaowen , Hu Hao , Che Guangbo , et al. Fabrication of Z-scheme γ-Bi2MoO6/Bi12GeO20 heterostructure for visible-light-driven photocatalytic degradation of organic pollutants[J]. Applied Surface Science, 2020, 499, 143668.
doi: 10.1016/j.apsusc.2019.143668
|
44 |
Luo Bifu , Xu Dongbo , Li Di , et al. Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. ACS Applied Materials & Interfaces, 2015, 7 (31): 17061- 17069.
URL
|
45 |
Li Xinying , Wang Liping , Xu Dongbo , et al. Enhanced photocatalytic degradation activity for tetracycline under visible light irradiation of Ag/Bi3.84W0.16O6.24 nanooctahedrons[J]. CrystEngComm, 2015, 17 (11): 2421- 2428.
doi: 10.1039/C4CE02376E
|
46 |
Jiang Enhui , Liu Xiaoteng , Che Huinan , et al. Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. RSC Advances, 2018, 8 (65): 37200- 37207.
doi: 10.1039/C8RA07482H
|
47 |
Yue Longfei , Wang Shanfeng , Shan Guoqiang , et al. Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water[J]. Applied Catalysis B: Environmental, 2015, 176/177, 11- 19.
doi: 10.1016/j.apcatb.2015.03.043
|
48 |
Di Jun , Ji Mengxia , Xia Jiexiang , et al. Bi4O5Br2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424, 331- 341.
doi: 10.1016/j.molcata.2016.08.029
|
49 |
Che Huinan , Che Guangbo , Jiang Enhui , et al. A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: Mineralization activity, degradation pathways and mechanism insight[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 224- 234.
doi: 10.1016/j.jtice.2018.05.004
|
50 |
Li Jinhai , Han Mengshu , Guo Yang , et al. Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal[J]. Applied Catalysis A: General, 2016, 524, 105- 114.
doi: 10.1016/j.apcata.2016.06.025
|
51 |
Zhou Chengyun , Lai Cui , Xu Piao , et al. Rational design of carbondoped carbon nitride/Bi12O17Cl2 composites: A promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (5): 6941- 6949.
URL
|
52 |
Zhong Shuang , Li Chenyang , Shen Mengnan , et al. Synthesis of modified bismuth tungstate and the photocatalytic properties on tetracycline degradation and pathways[J]. Journal of Materials Research and Technology, 2019, 8 (2): 1849- 1858.
doi: 10.1016/j.jmrt.2019.01.002
|
53 |
Wang Jia , Zhang Gaoke , Li Jun , et al. Novel three-dimensional flowerlike BiOBr/Bi2SiO5 p-n heterostructured nanocomposite for degradation of tetracycline: Enhanced visible light photocatalytic activity and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (11): 14221- 14229.
URL
|
54 |
Guo Hai , Niu Chenggang , Zhang Lei , et al. Construction of direct Z-scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: Accelerated interfacial charge transfer induced efficient Cr(Ⅵ) reduction, tetracycline degradation and escherichia coli inactivation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6): 8003- 8018.
|
55 |
Li Minfang , Lai Cui , Yi Huan , et al. Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism[J]. Journal of Colloid and Interface Science, 2019, 555, 770- 782.
doi: 10.1016/j.jcis.2019.08.035
|
56 |
He Dong , Sun Yabing , Li Shunbin , et al. Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst[J]. Journal of Chemical Technology & Biotechnology, 2015, 90 (12): 2249- 2256.
URL
|
57 |
Hailili R , Wang Zhiqiang , Xu Meiyue , et al. Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for visible light photodegradation of antibiotics[J]. Journal of Materials Chemistry A, 2017, 5 (40): 21275- 21290.
doi: 10.1039/C7TA06618J
|