[1] 胡洪营,李鑫.利用污水资源生产微藻生物柴油的关键技术及潜力分析[J]. 生态环境学报,2010,19(3):739-744.
[2] Mallick N.Biotechnological potential of immobilized algae for waste- water N,P and metal removal:a review[J].Biometals,2002,15(4): 377-390.
[3] Olguín E J.Phycoremediation:key issues for cost-effective nutrient removal processes[J].Biotechnol.Adv.,2003,22(1):81-91.
[4] Orpez R,Martínez M E,Hodaifa G,et al. Growth of the microalgae Botryococcus braunii in secondarily treated sewage[J]. Desalina-tion,2009,246(1):625-630.
[5] Ruiz J,lvarez-Díaz P D,Arbib Z,et al. Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater:prediction from a batch experiment[J]. Bioresour. Technol.,2013, 127(1):456-463.
[6] Ruiz J,Arbib Z,Alvarez-Díaz P D,et al. Photobiotreatment model (PhBT):a kinetic model for microalgae biomass growth and nutri-ent removal in wastewater[J]. Environ. Technol.,2013,34(5/6/7/8):979-991.
[7] Rodolfi L,Chini Zittelli G,Bassi N,et al. Microalgae for oil:strain selection,induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnol. Bioeng.,2009,102(1):100-112.
[8] Molina G E,Belarbi E H,Acien Fernandez F G,et al. Recovery of microalgal biomass and metabolites:process options and econom-ics[J]. Biotechnology Advances,2003,20(7/8):491-515.
[9] Milledge J J,Heaven S. A review of the harvesting of micro-algae for biofuel production[J]. Reviews in Environmental Science and Bio/Technology,2013,12(2):165-178.
[10] Vandamme D,Eyley S,Mooter G V D,et al. Highly charged cellu-lose-based nanocrystals as flocculants for harvesting Chlorella vul-garis[J]. Bioresource Technology,2015,194:270-275.
[11] Dries V,Annelies B,Giorgos M,et al. Reversible flocculation of microalgae using magnesium hydroxide[J]. Bioenerg. Res.,2015, 8(2):716-725.
[12] Borges L,Moronvillarreyes J A,D'Oca M G M,et al. Effects of flocculants on lipid extraction and fatty acid composition of the mi-croalgae Nannochloropsis oculata and Thalassiosira weissflogii[J]. Biomass Bioenergy,2011,35(10):4449-4454.
[13] Liu Y,W Liao,Chen S. Study of pellet formation of filamentous fun-gi Rhizopus oryzae using a multiple logistic regression model[J]. Briotechnol Bioeng,2008,99(1):117-128.
[14] Muradov N,Taha M,Miranda A F,et al. Fungal-assisted algal floc-culation:application in wastewater treatment and biofuel produc-tion[J]. Biotechnology for Biofuels,2015,8(1):1-23.
[15] Wrede D,Taha M,Miranda A F,et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells,lipid production and wastewater treatment[J]. Plos One, 2014,9(11):1-22.
[16] 邹运.两种地衣中内生真菌物种多样性的比较研究[D].济南:山东师范大学,2015.
[17] Christenson L,Sims R. Production and harvesting of microalgae for wastewater treatment,biofuels and bioproducts[J]. Biotechnology Advances,2011,29(6):686-702.
[18] Xie S,Sun S,Yuan J S,et al. Efficient coagulation of microalgae in cultures with filamentous fungi[J]. Algal Research,2013,2(1):28-33.
[19] Prajapati S K,Kumar P,Malik A,et al. Exploring pellet forming fil-amentous fungi as tool for harvesting non-flocculating unicellular microalgae[J]. Bioenergy Research,2014,7(4):1430-1440.
[20] Manheim D,Nelson Y. Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass produc-tion[J]. Environmental Progress and Sustainable Energy,2013,32(4):946-954.
[21] Henderson R K,Parsons S A,Jefferson B. Successful removal of al-gae through the control of zeta potential[J]. Separation Science and Technology,2008,43(7):1653-1666.
[22] Powell R J,Hill R T. Rapid aggregation of biofuel-producing algae by the bacterium bacillus sp. strain RP1137[J]. Applied and Envi-ronmental Microbiology,2013,79(19):6093-6101.
[23] Lee J,Cho D H,Ramanan R,et al.Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris[J]. Biore-source Technology,2013,131(2):195-201.
[24] Zhou W,Min M,Hu B,et al. Filamentous fungi assisted bio-floccu-lation:a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells[J]. Separation and Purification Technology,2013,107(4):158-165.
[25] Prajapati S K,Kaushik P,Malik A,et al. Phycoremediation and biogas potential of native algal isolates from soil and wastewater[J]. Bioresource Technology,2013,135(10):232-238.
[26] Subramanian S B,Yan S,Tyagi R D,et al. A new,pellet-forming fungal strain:its isolation,molecular identification,and perfor-mance for simultaneous sludge-solids reduction,flocculation,and dewatering[J]. Water Environment Research,2008,80(9):840-852.
[27] Liao W,Liu Y,Frear C,et al. A new approach of pellet formation of a filamentous fungus-Rhizopus oryzae[J]. Bioresource Technol-ogy,2007,98(18):3415-3423..
[28] 李昊翔.螺旋藻对重金属的耐受性和吸附研究[D].杭州:浙江大学,2005.
[29] Zhang J G,Hu B. A novel method to harvest microalgae via co-cul-ture of filamentous fungi to form cell pellets[J]. Bioresour. Tech-nol.,2012,114:529-535.
[30] 汲永臻,汪群慧,黄鹂鸣,等.采用白腐菌对难降解有机污染物的生物净化[J].农业工程学报,2006,6(22):211-214.
[31] 周海军,卢永,严莲荷,等.固定化菌藻系统对污水处理厂出水的深度处理[J].环境工程学报,2012,6(10):3631-3634.
[32] 任大军,张晓昱,颜克亮,等.白腐菌对焦化废水中吲哚的降解及其机理[J].华中科技大学学报(自然科学版),2006,34(5):121-124.
[33] 张晓昱,颜克亮,王宏勋.稻草秆粉基质中白腐菌对三苯甲烷类染料的降解特性[J]. 应用与环境生物学报,2006,12(2):255-258.
[34] 黄伟,李玉晖. 复合真菌对城市河流污水处理的模拟研究[J].畜牧与饲料科学,2009,30(4):94-95.
[35] 樊霆,周娜,刘云国,等.黑曲霉对重金属Cu(Ⅱ)和Zn(Ⅱ)的抗性及富集特性[J].农业环境科学学报,2012,31(9):1836-1841.
[36] 银玉荣.烟曲霉胞外聚合物与水中重金属Cu2+、Cd2+、Pb2+的相互作用机理[D].广州:华南理工大学,2012.
[37] 任大军.白腐菌对氮杂环化合物的降解及机理研究[D].武汉:华中科技大学,2012.
[38] 梁峙,周峰.米曲霉菌丝球对铅的吸附作用研究[J].食品工业科技,2003,24(8):37-39.
[39] 刘斌.微藻深度净化城市污水的实验研究[D].北京:北京建筑大学,2014.
[40] 邢丽贞,李飞,张向阳,等.固定化微藻在解决环境问题方面的应用[J].水资源保护,2006,22(5):9-11.
[41] 李飞,邢丽贞,闫春玲,等.环境因素对微藻去除氮磷的影响[J].山东建筑工程学院学报,2006,21(3):268-272.
[42] 隆美容.耐重金属镉丝状真菌的分离、鉴定及特性研究[D].阿拉尔市:塔里木大学,2013. |