1 |
王庆吉,胡景泽,孙秀梅,等. 石油石化含油废水混凝气浮处理系统研究进展[J]. 工业水处理,2024,44(3):45-56.
|
|
WANG Qingji, HU Jingze, SUN Xiumei,et al. Research progress of coagulation air flotation treatment system for petroleum and petrochemical wastewater[J]. Industrial Water Treatment,2024,44(3):45-56.
|
2 |
杨玉香,陈兴,张世东. 加压式溶气气浮在炼油污水处理中的应用[J]. 中小企业管理与科技(下旬刊),2016(3):248.
|
|
YANG Yuxiang, CHEN Xing, ZHANG Shidong. Application of pressurized dissolved air flotation in refinery wastewater treatment[J]. Management & Technology of SME,2016(3):248.
|
3 |
王重阳,马菁华,吴睿钰,等. 基于BP神经网络的水华预测模型及其敏感性分析[J]. 信息记录材料,2018,19(11):81-83.
|
|
WANG Chongyang, MA Jinghua, WU Ruiyu,et al. Prediction model of water bloom based on BP neural network and its sensitivity analysis[J]. Information Recording Materials,2018,19(11):81-83.
|
4 |
叶延亮,庄严. 基于BP神经网络的水质预测技术[J]. 北华大学学报(自然科学版),2012,13(4):493-496.
|
|
YE Yanliang, ZHUANG Yan. Water quality prediction technology based on BP neural network[J]. Journal of Beihua University(Natural Science),2012,13(4):493-496.
|
5 |
ZHANG Jingyi, CHEN Cunkun, WU Caie,et al. Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network(PSO-BP-ANN)[J]. Scientia Horticulturae, 2024, 331:112789. doi: 10.1016/j.scienta.2023.112789
|
6 |
SU Xuehua, HE Xiaolong, ZHANG Gang,et al. Research on SVR water quality prediction model based on improved sparrow search algorithm[J]. Computational Intelligence and Neuroscience, 2022(1):7327072. doi: 10.1155/2022/7327072
|
7 |
|
|
|
8 |
曹泓,储政勇,李臻. 基于人工神经网络的巢湖流域水体总磷和总氮预测[J]. 科技风,2019(20):200.
|
|
CAO Hong, CHU Zhengyong, LI Zhen. Prediction of total phosphorus and total nitrogen in Chaohu Lake Basin based on artificial neural network[J]. Technology Wind,2019(20):200.
|
9 |
孟滔. 改进粒子群算法优化SVR水质预测模型研究[J]. 农业与技术,2021,41(3):33-36.
|
|
MENG Tao. Optimization of SVR water quality prediction model by improved particle swarm optimization[J]. Agriculture and Technology,2021,41(3):33-36.
|
10 |
马泽恺. 基于支持向量机的优化算法及其在水质预测中的应用[D]. 昆明:昆明理工大学,2015.
|
|
MA Zekai. Optimization algorithm based on support vector machine and its application in water quality prediction[D]. Kunming:Kunming University of Science and Technology,2015.
|
11 |
孟滔. 支持向量回归水质预测模型的研究进展[J]. 绿色科技,2021,23(8):77-79.
|
|
MENG Tao. Research progress of water quality prediction model based on support vector regression[J]. Journal of Green Science and Technology,2021,23(8):77-79.
|
12 |
|
|
|
13 |
武暕,郭飞,杨明儒. 2002—2017年葠窝水库及入库河流水质相关性分析和影响因素[J]. 环境工程,2019,37(10):206-210.
|
|
WU Jian, GUO Fei, YANG Mingru. Water quality correlation analysis and influencing factors in the Shenwo Reservoir and its joint rivers during 2002—2017[J]. Environmental Engineering,2019,37(10):206-210.
|
14 |
ZHANG Yilong, CHEN Pengyu, LI Xia,et al. Correlation analysis between microbial fouling resistance,flow rate and water quality parameters[J]. Heat and Mass Transfer, 2022, 58(6):981-989. doi: 10.1007/s00231-021-03155-1
|
15 |
杨勇,梁文,赵亮庆,等. 不同产地三七总皂苷和土壤矿质元素、水质的相关性分析[J]. 云南大学学报(自然科学版),2023,45(6):1331-1339.
|
|
YANG Yong, LIANG Wen, ZHAO Liangqing,et al. The correlations analysis between total saponin and soil mineral elements,water factors of Panax notoginseng from different producing areas[J]. Journal of Yunnan University(Natural Sciences Edition),2023,45(6):1331-1339.
|
16 |
胡泽文,周西姬. 基于BP神经网络和MIV算法的高价值专利预测与影响因素分析[J]. 信息资源管理学报,2023,13(6):144-155.
|
|
HU Zewen, ZHOU Xiji. Predicting highly-value patents and analyzing its determinants based on BP neural network and MIV algorithm[J]. Journal of Information Resources Management,2023,13(6):144-155.
|
17 |
ZHU Wen. Application of regression neural network and MIV algorithm in visual communication design[J]. Journal of Physics:Conference Series, 2021, 1941(1):012081. doi: 10.1088/1742-6596/1941/1/012081
|
18 |
刘洋. 基于PLS和SVR的水质预测模型研究[D]. 昆明:昆明理工大学,2017.
|
|
LIU Yang. Research on water quality prediction model based on PLS and SVR[D]. Kunming:Kunming University of Science and Technology,2017.
|
19 |
宋贤民. 基于支持向量机的出水TP软测量[J]. 科技信息,2009(3): 454.
|
|
SONG Xianmin. Soft sensing of effluent TP based on support vector machine[J]. Science & Technology Information,2009(3):454.
|
20 |
郑一华. 基于支持向量机的水质评价和预测研究[D]. 南京:河海大学,2006.
|
|
ZHENG Yihua. Research on water quality evaluation and prediction based on support vector machine[D]. Nanjing:Hohai University,2006.
|
21 |
PALLANT J. SPSS survival manual: A step by step guide to data analysis using IBM SPSS[M]. 7th ed tion. New York:McGraw-Hill Education, 2020:138-145. doi: 10.4324/9781003117407-16
|
22 |
WANG Wenjian, Changqian MEN, LU Weizhen. Online prediction model based on support vector machine[J]. Neurocomputing, 2008, 71(4/5/6):550-558. doi: 10.1016/j.neucom.2007.07.020
|
23 |
YU Wen, LI Xiaoou. On-line fuzzy modeling via clustering and support vector machines[J]. Information Sciences, 2008, 178(22):4264-4279. doi: 10.1016/j.ins.2008.07.014
|
24 |
张颖,高倩倩. 基于灰色模型和模糊神经网络的综合水质预测模型研究[J]. 环境工程学报,2015,9(2):537-545.
|
|
ZHANG Ying, GAO Qianqian. Comprehensive prediction model of water quality based on grey model and fuzzy neural network[J]. Chinese Journal of Environmental Engineering,2015,9(2):537-545.
|