[1] |
ZHAO Shuhan. Comparative study of conventional and biological water treatment[J]. Academic Journal of Environment & Earth Science, 2023, 5(9):77-86. doi: 10.25236/ajee.2023.050910
|
[2] |
TANG Maoqing, QI Cong, YUE Linfei. Cu-Fe 3O 4/sodium alginate/polyacrylamide hydrogel evaporator for solar seawater desalination[J]. Solar Energy Materials and Solar Cells, 2024, 278:113168. doi: 10.1016/j.solmat.2024.113168
|
[3] |
FARHANI S, BARHOUMI E M, ISLAM Q UL,et al. Optimal design and economic analysis of a stand-alone integrated solar hydrogen water desalination system case study agriculture farm in Kairouan Tunisia[J]. International Journal of Hydrogen Energy, 2024, 63:759-766. doi: 10.1016/j.ijhydene.2024.03.043
|
[4] |
KIM H,LIM H, HWANG D J,et al. A systematic study of the evaporation performance of column-type 3D solar evaporators with variations in the surrounding temperatures[J]. Desalination, 2024, 592:118077. doi: 10.1016/j.desal.2024.118077
|
[5] |
XU Weizhong, XING Yun, LIU Jian,et al. Efficient water transport and solar steam generation via radially,hierarchically structured aerogels[J]. ACS Nano, 2019, 13(7):7930-7938. doi: 10.1021/acsnano.9b02331
|
[6] |
DAI Chenyang, LI Zhengtong, ZHENG Kaidan,et al. Strategic design of porous interfacial evaporators:A comprehensive review unveiling the significant role of pore engineering[J]. Nano Energy, 2024, 131:110244. doi: 10.1016/j.nanoen.2024.110244
|
[7] |
桓茜,靳浩斌,王伟,等. 三维光热吸收材料的制备及界面蒸发性能[J]. 工业水处理,2025,45(2):78-84.
|
|
HUAN Xi, JIN Haobin, WANG Wei,et al. Preparation and evaporation performance of 3D photothermal absorbing materials[J]. Industrial Water Treatment,,2025,45(2):78-84.
|
[8] |
SUN Yukun, QU Dan, LIU Wenning,et al. Fabrication of a bilayer structural carbon-based hydrogel material with excellent energy conversion efficiency[J]. Science China Materials, 2023, 66(12):4834-4840. doi: 10.1007/s40843-023-2600-0
|
[9] |
杨传玺,刘潇广,高畅,等. 新型二维层状材料MXene在光催化水处理应用中的研究进展[J]. 工业水处理,2024,44(1):22-31.
|
|
YANG Chuanxi, LIU Xiaoguang, GAO Chang,et al. Research progress of novel two-dimensional layered nanomaterials MXene-based photocatalyst in water treatment[J]. Industrial Water Treatment,2024,44(1):22-31.
|
[10] |
ZHANG Ruoyu, JIN Nanxi, JIA Tao,et al. A narrow-bandgap photothermal material based on a donor-acceptor structure for the solar-thermal conversion application[J]. Journal of Materials Chemistry A, 2023, 11(28):15380-15388. doi: 10.1039/d3ta02301j
|
[11] |
YOU Jiayi, LIU Lingshan, HUANG Wanqiu,et al. Redox-active micelle-based reaction platforms for in situ preparation of noble metal nanocomposites with photothermal conversion capability[J]. ACS Applied Materials & Interfaces, 2021, 13(11):13648-13657. doi: 10.1021/acsami.0c21925
|
[12] |
LI Shuyao, YAN Ting, HUO Yingjie,et al. Carbon nanotube/carbon foam thermal-bridge enhancing solar energy conversion and storage of phase change materials[J]. Materials Today Sustainability, 2024, 28:100986. doi: 10.1016/j.mtsust.2024.100986
|
[13] |
LIU Xiahui, SHU Ting, LIU Tao,et al. 3D biomass-based interfacial solar steam generation:Component,optimization,and application[J]. Energy Technology, 2024, 12(12):2401261. doi: 10.1002/ente.202401261
|
[14] |
GUI Ziyu, YANG Zirui, XIANG Daoping. Efficient solar water evaporation enabled by Ti 3O 5/Ti 4O 7-based melamine-urea-formaldehyde aerogel evaporators[J]. Chemical Engineering Journal, 2023, 466:143055. doi: 10.1016/j.cej.2023.143055
|
[15] |
CAO Hongxia, ZHANG Sai, JIANG Tao,et al. Preparing photo-thermal conversion membrane with CuS-Multi walled carbon nanotube(MWCNT) composite for solar-driven interfacial evaporation[J]. Materials Letters, 2022, 317:132145. doi: 10.1016/j.matlet.2022.132145
|
[16] |
LIU Zixiao, ZHOU Zhan, WU Naiyan,et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient,continuous,salt-free desalination[J]. ACS Nano, 2021, 15(8):13007-13018. doi: 10.1021/acsnano.1c01900
|
[17] |
丁一,季家友,喻湘华,等. 基于水凝胶基太阳能蒸发器的研究进展[J]. 复合材料学报,2023,40(9):4932-4942.
|
|
DING Yi, JI Jiayou, YU Xianghua,et al. Research progress on the solar evaporators based on hydrogels[J].Acta Materiae Compositae Sinica,2023,40(9):4932-4942.
|
[18] |
ZHANG Tian, YAN Wen, WANG Yan,et al. An ecofriendly and efficient wood-based polyoxovanadate solar evaporation generator[J]. Science China Materials, 2023, 66(8):3292-3299. doi: 10.1007/s40843-023-2453-x
|
[19] |
ZHONG Lubin, CHEN Shujue, HOU Xu,et al. Salt-resistant carbon aerogel with hierarchical interconnected channels for continuous and efficient solar evaporation of hypersaline water[J]. Science China Materials, 2023, 66(8):3300-3309. doi: 10.1007/s40843-022-2467-x
|
[20] |
HAO Liang, LIU Ning, NIU Ran,et al. High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane[J]. Science China Materials, 2022, 65(1):201-212. doi: 10.1007/s40843-021-1721-6
|
[21] |
MIYAZAKI M, FUJII A, EBATA T,et al. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages[J]. ChemInform, 2004, 304(5674):1134-1137. doi: 10.1126/science.1096037
|
[22] |
LI Yeran, JIN Xin, LI Wei,et al. Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation[J]. Science China Materials, 2022, 65(4):1057-1067. doi: 10.1007/s40843-021-1840-3
|
[23] |
刘媛媛,薛开诚,张云飞,等. MoS2/PVA光热海绵的制备及其水蒸发性能[J]. 武汉工程大学学报,2024,46(5):510-515.
|
|
LIU Yuanyuan, XUE Kaicheng, ZHANG Yunfei,et al. Preparation of MoS2/PVA photothermal sponge and its water evaporation performance[J]. Journal of Wuhan Institute of Technology,2024,46(5):510-515.
|
[24] |
杨兆华,成鸿静,杨弋,等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报,2022,43(10):267-273.
|
|
YANG Zhaohua, CHENG Hongjing, YANG Yi,et al. Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance[J]. Chemical Journal of Chinese Universities,2022,43(10):267-273.
|
[25] |
YU Kun, TAN Xin, HU Yanan,et al. Microstructure effects on the electrochemical corrosion properties of Mg-4.1% Ga-2.2% Hg alloy as the anode for seawater-activated batteries[J]. Corrosion Science, 2011, 53(5):2035-2040. doi: 10.1016/j.corsci.2011.01.040
|
[26] |
毛停停,李双福,黄李茗铭,等. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展,2023,42(1):178-193.
|
|
MAO Tingting, LI Shuangfu, HUANG Limingming,et al. Solar interfacial evaporation system and materials for water treatment and organic solvent purification[J]. Chemical Industry and Engineering Progress,2023,42(1):178-193.
|
[27] |
CHEN Zhongyi, WANG Jing, ZHOU Haijun,et al. Janus nano-micro structure-enabled coupling of photothermal conversion,heat localization and water supply for high-efficiency solar-driven interfacial evaporation[J]. Advanced Functional Materials, 2023, 33(41):2303656. doi: 10.1002/adfm.202303656
|
[28] |
何庶雨. 基于Janus膜耦合太阳能双轴追踪系统的界面蒸发实验研究[D]. 北京:华北电力大学,2023.
|
|
HE Shuyu. Experimental study on interfacial evaporation based on Janus film-coupled solar dual-axis tracking system[D]. Beijing:North China Electric Power University,2023.
|