| 1 | Luo Yunlong ,  Guo Wenshan ,  Ngo H H , et al.  A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473/474, 619- 641. doi: 10.1016/j.scitotenv.2013.12.065
 | 
																													
																						| 2 | Wilkinson J L ,  Hooda P S ,  Barker J , et al.  Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans[J]. Critical Reviews in Environmental Science and Technology, 2015, 46 (4): 336- 381. URL
 | 
																													
																						| 3 | 沈国宸, 耿金菊, 吴刚, 等.  高级氧化联合生物活性炭工艺深度净化污水中PPCPs研究进展[J]. 环境科学学报, 2019, 39 (10): 3195- 3206. URL
 | 
																													
																						| 4 | Ashfaq M ,  Li Yan ,  Wang Yuwen , et al.  Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China[J]. Water Research, 2017, 123, 655- 667. doi: 10.1016/j.watres.2017.07.014
 | 
																													
																						| 5 | Ben Weiwei ,  Zhu Bing ,  Yuan Xiangjuan , et al.  Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes[J]. Water Research, 2018, 130, 38- 46. doi: 10.1016/j.watres.2017.11.057
 | 
																													
																						| 6 | Volker J ,  Stapf M ,  Miehe U , et al.  Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon[J]. Environmental Science & Technology, 2019, 53 (13): 7215- 7233. URL
 | 
																													
																						| 7 | Escher B I ,  Van Daele C ,  Dutt M , et al.  Most oxidative stress response in water samples comes from unknown chemicals: The need for effectbased water quality trigger values[J]. Environmental Science & Technology, 2013, 47 (13): 7002- 7011. URL
 | 
																													
																						| 8 | Neale P A ,  Braun G ,  Brack W , et al.  Assessing the mixture effects in in vitro bioassays of chemicals occurring in small agricultural streams during rain events[J]. Environmental Science & Technology, 2020, 54 (13): 8280- 8290. URL
 | 
																													
																						| 9 | Wernersson A-S ,  Carere M ,  Maggi C , et al.  The European technical report on aquatic effect-based monitoring tools under the water framework directive[J]. Environmental Sciences Europe, 2015, 27, 1- 11. doi: 10.1186/s12302-014-0033-2
 | 
																													
																						| 10 | Blackwell B R ,  Ankley G T ,  Bradley P M , et al.  Potential toxicity of complex mixtures in surface waters from a nationwide survey of United States streams: Identifying in vitro bioactivities and causative chemicals[J]. Environmental Science & Technology, 2019, 53 (2): 973- 983. URL
 | 
																													
																						| 11 | 王亚楠, 文海若, 王雪.  遗传毒性基因突变评价方法的研究进展[J]. 癌变·畸变·突变, 2019, 31 (5): 406- 411. doi: 10.3969/j.issn.1004-616x.2019.05.013
 | 
																													
																						| 12 | De Baat M L ,  Bas D A ,  Van Beusekom S A M , et al.  Nationwide screening of surface water toxicity to algae[J]. Science of the Total Environment, 2018, 645, 780- 787. doi: 10.1016/j.scitotenv.2018.07.214
 | 
																													
																						| 13 | Schluter-Vorberg L ,  Knopp G ,  Cornel P , et al.  Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes[J]. Aquatic Toxicology, 2017, 186, 171- 179. doi: 10.1016/j.aquatox.2017.03.001
 | 
																													
																						| 14 | Shao Ying ,  Xiao Hongxia ,  Di Paolo C , et al.  Integrated zebrafish-based tests as an investigation strategy for water quality assessment[J]. Water Research, 2019, 150, 252- 260. doi: 10.1016/j.watres.2018.11.039
 | 
																													
																						| 15 | Li Caixia ,  Chen Qiyu ,  Zhang Xiaoyan , et al.  An integrated approach with the zebrafish model for biomonitoring of municipal wastewater effluent and receiving waters[J]. Water Research, 2018, 131, 33- 44. | 
																													
																						| 16 | De Baat M L ,  Van Der Oost R ,  Van Der Lee G H , et al.  Advancements in effect-based surface water quality assessment[J]. Water Research, 2020, 183, 116017. doi: 10.1016/j.watres.2020.116017
 | 
																													
																						| 17 | Watson K ,  Shaw G ,  Leusch F D , et al.  Chlorine disinfection by-products in wastewater effluent: Bioassay-based assessment of toxicological impact[J]. Water Research, 2012, 46 (18): 6069- 6083. doi: 10.1016/j.watres.2012.08.026
 | 
																													
																						| 18 | 王颖, 廖訚彧, 欧阳莎莉, 等.  发光细菌在线监测水体污染研究进展[J]. 净水技术, 2020, 39 (9): 10- 16. URL
 | 
																													
																						| 19 | Wu Qianyuan ,  Zhou Yuting ,  Li Wanxin , et al.  Underestimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase[J]. Water Research, 2019, 162, 43- 52. doi: 10.1016/j.watres.2019.06.054
 | 
																													
																						| 20 | Wu Qianyuan ,  Liang Zifan ,  Wang Wenlong , et al.  Non-volatile disinfection byproducts are far more toxic to mammalian cells than volatile byproducts[J]. Water Research, 2020, 183, 116080. doi: 10.1016/j.watres.2020.116080
 | 
																													
																						| 21 | 刘智娟, 张圆, 尹平河, 等.  HepG2细胞对垃圾渗滤液经SND/ UF/RO处理前后的毒性评估[J]. 环境科学学报, 2021, 41 (2): 660- 669. URL
 | 
																													
																						| 22 | Huang Wencheng ,  Du Ye ,  Liu Min , et al.  Influence of UV irradiation on the toxicity of chlorinated water to mammalian cells: Toxicity drivers, toxicity changes and toxicity surrogates[J]. Water Research, 2019, 165, 115024. doi: 10.1016/j.watres.2019.115024
 | 
																													
																						| 23 | Li Zhigang ,  Liu Xinyao ,  Huang Zhijun , et al.  Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China[J]. Water Research, 2019, 157, 247- 257. doi: 10.1016/j.watres.2019.03.072
 | 
																													
																						| 24 | Yu Yue ,  Wu Bing ,  Jiang Linmiao , et al.  Comparative analysis of toxicity reduction of wastewater in twelve industrial park wastewater treatment plants based on battery of toxicity assays[J]. Scientific Reports, 2019, 9 (1): 3751. doi: 10.1038/s41598-019-40154-z
 | 
																													
																						| 25 | Liu Yujie ,  Zhu Dicong ,  Zhao Zhihua , et al.  Comparative cytotoxicity studies of halophenolic disinfection byproducts using human extended pluripotent stem cells[J]. Chemosphere, 2021, 263, 127899. doi: 10.1016/j.chemosphere.2020.127899
 | 
																													
																						| 26 | Llorente M T ,  Parra J M ,  Sanchez-Fortun S , et al.  Cytotoxicity and genotoxicity of sewage treatment plant effluents in rainbow trout cells(RTG-2)[J]. Water Research, 2012, 46 (19): 6351- 6358. doi: 10.1016/j.watres.2012.08.039
 | 
																													
																						| 27 | Qu Guangbo ,  Shi Jianbo ,  Wang T , et al.  Identification of tetrabromobisphenol A diallyl ether as an emerging neurotoxicant in environmental samples by bioassay-directed fractionation and HPLC-APCIMS/MS[J]. Environmental Science & Technology, 2011, 45 (11): 5009- 5016. URL
 | 
																													
																						| 28 | Itzel F ,  Gehrmann L ,  Bielak H , et al.  Investigation of full-scale ozonation at a municipal wastewater treatment plant using a toxicity-based evaluation concept[J]. Journal of Toxicology and Environmental Health-Part A-Current Issues, 2017, 80 (23/24): 1242- 1258. | 
																													
																						| 29 | Mckie M J ,  Taylor-Edmonds L ,  Andrews S A , et al.  Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity[J]. Water Research, 2015, 81, 196- 207. doi: 10.1016/j.watres.2015.05.034
 | 
																													
																						| 30 | Stalter D ,  Magdeburg A ,  Oehlmann J .  Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery[J]. Water Research, 2010, 44 (8): 2610- 2620. doi: 10.1016/j.watres.2010.01.023
 | 
																													
																						| 31 | Valitalo P ,  Massei R ,  Heiskanen I , et al.  Effect-based assessment of toxicity removal during wastewater treatment[J]. Water Research, 2017, 126, 153- 163. doi: 10.1016/j.watres.2017.09.014
 | 
																													
																						| 32 | Monarca S ,  Feretti D ,  Collivignarelli C , et al.  The influence of different disinfectants on mutagenicity and toxicity of urban wastewater[J]. Water Research, 2000, 34 (17): 4261- 4269. doi: 10.1016/S0043-1354(00)00192-5
 | 
																													
																						| 33 | 洪涵璐, 赵伟, 尹金宝.  饮用水消毒副产物基因毒性与致癌性研究进展[J]. 环境监控与预警, 2020, 12 (5): 36- 48. URL
 | 
																													
																						| 34 | Villanueva C M ,  Gracia-Lavedan E ,  Bosetti C , et al.  Colorectal cancer and long-term exposure to trihalomethanes in drinking water: A multicenter case-control study in Spain and Italy[J]. Environmental Health Perspectives, 2017, 125 (1): 56- 65. doi: 10.1289/EHP155
 | 
																													
																						| 35 | Zegura B ,  Heath E ,  Cernosa A , et al.  Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples[J]. Chemosphere, 2009, 75 (11): 1453- 1460. doi: 10.1016/j.chemosphere.2009.02.041
 | 
																													
																						| 36 | Magdeburg A ,  Stalter D ,  Schlusener M , et al.  Evaluating the efficiency of advanced wastewater treatment: Target analysis of organic contaminants and(geno-) toxicity assessment tell a different story[J]. Water Research, 2014, 50, 35- 47. doi: 10.1016/j.watres.2013.11.041
 | 
																													
																						| 37 | Bhuvaneshwari M ,  Eltzov E ,  Veltman B , et al.  Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp[J]. Water Research, 2019, 164, 114910. doi: 10.1016/j.watres.2019.114910
 | 
																													
																						| 38 | Misik M ,  Ferk F ,  Schaar H , et al.  Genotoxic activities of wastewater after ozonation and activated carbon filtration: Different effects in liver-derived cells and bacterial indicators[J]. Water Research, 2020, 186, 116328. doi: 10.1016/j.watres.2020.116328
 | 
																													
																						| 39 | Neale P A ,  Grimaldi M ,  Boulahtouf A , et al.  Assessing species-specific differences for nuclear receptor activation for environmental water extracts[J]. Water Research, 2020, 185, 116247. doi: 10.1016/j.watres.2020.116247
 | 
																													
																						| 40 | Jiao Fang ,  Qiao Kun ,  Jiang Yao , et al.  Integrated thyroid endocrine disrupting effect on zebrafish(Danio rario) larvae via simultaneously repressing type Ⅱ iodothyronine deiodinase and activating thyroid receptor-mediated signaling following waterborne exposure to trace azocyclotin[J]. Environmental Pollution, 2019, 255, 113328. doi: 10.1016/j.envpol.2019.113328
 | 
																													
																						| 41 | Abbas A ,  Schneider I ,  Bollmann A , et al.  What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays[J]. Water Research, 2019, 152, 47- 60. doi: 10.1016/j.watres.2018.12.049
 | 
																													
																						| 42 | 张剑云. 糖皮质激素受体和盐皮质激素受体介导的典型农药和金属的内分泌干扰效应的体外评价[D]. 浙江: 浙江大学, 2017. | 
																													
																						| 43 | 唐语谦, 王谙, 朋贤, 等.  液体样品中雌激素活性物质检测方法概述[J]. 食品研究与开发, 2019, 40 (14): 213- 218. URL
 | 
																													
																						| 44 | Itzel F ,  Gehrmann L ,  Teutenberg T , et al.  Recent developments and concepts of effect-based methods for the detection of endocrine activity and the importance of antagonistic effects[J]. TRAC Trends in Analytical Chemistry, 2019, 118, 699- 708. doi: 10.1016/j.trac.2019.06.030
 | 
																													
																						| 45 | Conley J M ,  Evans N ,  Cardon M C , et al.  Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters[J]. Environmental Science & Technology, 2017, 51 (9): 4781- 4791. | 
																													
																						| 46 | 王凤玲. PXR调控CYP3A1的激活在PEG化多西紫杉醇脂质体诱导ABC现象中的作用研究[D]. 安徽: 安徽中医药大学, 2019. | 
																													
																						| 47 | 李剑, 任姝娟, 马梅, 等.  改进型重组基因酵母TR-GRIP1检测化合物甲状腺激素干扰活性[J]. 环境科学研究, 2011, 24 (10): 1172- 1177. URL
 | 
																													
																						| 48 | Liu Shan ,  Xu Xiangrong ,  Qi Zhanhui , et al.  Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption[J]. Environmental Pollution, 2017, 228, 72- 81. doi: 10.1016/j.envpol.2017.05.031
 | 
																													
																						| 49 | Chakraborty P ,  Shappell N W ,  Mukhopadhyay M , et al.  Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: Occurrence, sources, estrogenicity screening and ecotoxicological risk assessment[J]. Water Research, 2020, 190, 116668. URL
 | 
																													
																						| 50 | Sangster J L ,  Ali J M ,  Snow D D , et al.  Bioavailability and fate of sediment-associated progesterone in aquatic systems[J]. Environmental Science & Technology, 2016, 50 (7): 4027- 4036. URL
 | 
																													
																						| 51 | Jenkins R L ,  Wilson E M ,  Angus R A , et al.  Production of androgens by microbial transformation of progesterone in vitro: A model for androgen production in rivers receiving paper mill effluent[J]. Environmental Health Perspectives, 2004, 112 (15): 1508- 1511. doi: 10.1289/ehp.7161
 | 
																													
																						| 52 | 张一鸣. 部分环境激素的定量构效关系研究[D]. 南京: 南京医科大学, 2016. | 
																													
																						| 53 | Leusch F D L ,  Neale P A ,  Arnal C , et al.  Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries[J]. Water Research, 2018, 139, 10- 18. doi: 10.1016/j.watres.2018.03.056
 | 
																													
																						| 54 | Valitalo P ,  Perkola N ,  Seiler T B , et al.  Estrogenic activity in Finnish municipal wastewater effluents[J]. Water Research, 2016, 88, 740- 749. doi: 10.1016/j.watres.2015.10.056
 | 
																													
																						| 55 | Prochazkova T ,  Sychrova E ,  Vecerkova J , et al.  Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton[J]. Water Research, 2018, 136, 12- 21. URL
 | 
																													
																						| 56 | Sauer P ,  Stara A ,  Golovko O , et al.  Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics[J]. Water Research, 2018, 137, 64- 71. doi: 10.1016/j.watres.2018.02.065
 | 
																													
																						| 57 | Muschket M ,  Di Paolo C ,  Tindall A J , et al.  Identification of unknown antiandrogenic compounds in surface waters by effect-directed analysis(EDA) using a parallel fractionation approach[J]. Environmental Science & Technology, 2018, 52 (1): 288- 297. URL
 | 
																													
																						| 58 | Neale P A ,  Ait-Aissa S ,  Brack W , et al.  Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling[J]. Environmental Science & Technology, 2015, 49 (24): 14614- 14624. URL
 | 
																													
																						| 59 | De Baat M L ,  Kraak M H S ,  Van Der Oost R , et al.  Effect-based nationwide surface water quality assessment to identify ecotoxicological risks[J]. Water Research, 2019, 159, 434- 443. doi: 10.1016/j.watres.2019.05.040
 | 
																													
																						| 60 | Neale P A ,  O'brien J W ,  Glauch L , et al.  Wastewater treatment efficacy evaluated with in vitro bioassays[J]. Water Research X, 2020, 9, 100072. doi: 10.1016/j.wroa.2020.100072
 | 
																													
																						| 61 | Schneider I ,  Abbas A ,  Bollmann A , et al.  Post-treatment of ozonated wastewater with activated carbon and biofiltration compared to membrane bioreactors: Toxicity removal in vitro and in Potamopyrgus antipodarum[J]. Water Research, 2020, 185, 116104. doi: 10.1016/j.watres.2020.116104
 | 
																													
																						| 62 | Jarosova B ,  Ersekova A ,  Hilscherova K , et al.  Europe-wide survey of estrogenicity in wastewater treatment plant effluents: The need for the effect-based monitoring[J]. Environmental Science and Pollution Research, 2014, 21 (18): 10970- 10982. doi: 10.1007/s11356-014-3056-8
 | 
																													
																						| 63 | Cavallin J E ,  Battaglin W A ,  Beihoffer J , et al.  Effects-based monitoring of bioactive chemicals discharged to the Colorado River before and after a municipal wastewater treatment plant replacement[J]. Environmental Science & Technology, 2021, 55 (2): 974- 984. | 
																													
																						| 64 | Hamers T ,  Legradi J ,  Zwart N , et al.  Time-integrative passive sampling combined with toxicity profiling(TIPTOP): An effect-based strategy for cost-effective chemical water quality assessment[J]. Environmental Toxicology and Pharmacology, 2018, 64, 48- 59. doi: 10.1016/j.etap.2018.09.005
 | 
																													
																						| 65 | Rosenmai A K ,  Lundqvist J ,  Gago-Ferrero P , et al.  Effect-based assessment of recipient waters impacted by on-site, small scale, and large scale waste water treatment facilities-combining passive sampling with in vitro bioassays and chemical analysis[J]. Scientific Reports, 2018, 8 (1): 17200. doi: 10.1038/s41598-018-35533-x
 | 
																													
																						| 66 | Daniels K D ,  Vandervort D ,  Wu Shimin , et al.  Downstream trends of in vitro bioassay responses in a wastewater effluent-dominated river[J]. Chemosphere, 2018, 212, 182- 192. doi: 10.1016/j.chemosphere.2018.07.190
 | 
																													
																						| 67 | Alygizakis N A ,  Besselink H ,  Paulus G K , et al.  Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis[J]. Environment International, 2019, 127, 420- 429. doi: 10.1016/j.envint.2019.03.060
 | 
																													
																						| 68 | Creusot N ,  Ait-Aissa S ,  Tapie N , et al.  Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling[J]. Environmental Science & Technology, 2014, 48 (7): 3649- 3657. | 
																													
																						| 69 | Houtman C J ,  Ten Broek R ,  Brouwer A .  Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQMS[J]. Science of the Total Environment, 2018, 630, 1492- 1501. doi: 10.1016/j.scitotenv.2018.02.273
 | 
																													
																						| 70 | 姜巍巍, 言野, 李娜, 等.  水源水雄激素受体干扰效应及在水处理工艺中的变化[J]. 生态毒理学报, 2016, 11 (2): 405- 412. URL
 | 
																													
																						| 71 | 李剑, 崔青, 马梅, 等.  应用重组孕激素基因酵母测定饮用水中内分泌干扰物的方法[J]. 环境科学, 2006, 27 (12): 2463- 2466. doi: 10.3321/j.issn:0250-3301.2006.12.017
 | 
																													
																						| 72 | Schriks M ,  Van Leerdam J A ,  Van Der Linden S C , et al.  High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands[J]. Environmental Science & Technology, 2010, 44 (12): 4766- 4774. URL
 | 
																													
																						| 73 | Gehrmann L ,  Bielak H ,  Behr M , et al.  (Anti-)estrogenic and (anti-) androgenic effects in wastewater during advanced treatment: Comparison of three in vitro bioassays[J]. Environmental Science and Pollution Research, 2018, 25 (5): 4094- 4104. doi: 10.1007/s11356-016-7165-4
 | 
																													
																						| 74 | Bittner M ,  Janosek J ,  Hilscherova K , et al.  Activation of Ah receptor by pure humic acids[J]. Environmental Toxicology, 2006, 21 (4): 338- 342. doi: 10.1002/tox.20185
 | 
																													
																						| 75 | Staudinger J L ,  Ding X ,  Lichti K .  Pregnane X receptor and natural products: Beyond drug-drug interactions[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2 (6): 847- 857. URL
 | 
																													
																						| 76 | Kunz P Y ,  Simon E ,  Creusot N , et al.  Effect-based tools for monitoring estrogenic mixtures: Evaluation of five in vitro bioassays[J]. Water Research, 2017, 110, 378- 388. doi: 10.1016/j.watres.2016.10.062
 | 
																													
																						| 77 | Escher B I ,  Neale P A ,  Leusch F D .  Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values[J]. Water Research, 2015, 81, 137- 148. doi: 10.1016/j.watres.2015.05.049
 | 
																													
																						| 78 | Escher B I ,  Selim A A ,  Behnisch P A , et al.  Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards(EQS) of the European Water Framework Directive[J]. Science of the Total Environment, 2018, 628/629, 748- 765. doi: 10.1016/j.scitotenv.2018.01.340
 | 
																													
																						| 79 | Escher B I ,  Neale P A .  Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays[J]. Environmental Toxicology and Chemistry, 2021, 40 (2): 487- 499. doi: 10.1002/etc.4944
 | 
																													
																						| 80 | Jarosova B ,  Blaha L ,  Giesy J P , et al.  What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe?[J]. Environment International, 2014, 64, 98- 109. URL
 | 
																													
																						| 81 | Kase R ,  Javurkova B ,  Simon E , et al.  Screening and risk management solutions for steroidal estrogens in surface and wastewater[J]. Trac-Trends in Analytical Chemistry, 2018, 102, 343- 358. doi: 10.1016/j.trac.2018.02.013
 | 
																													
																						| 82 | Brion F ,  De Gussem V ,  Buchinger S , et al.  Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic(EASZY) assay: Comparison with in vitro cell-based assays and determination of effect-based trigger values[J]. Environment International, 2019, 130, 104896. doi: 10.1016/j.envint.2019.06.006
 | 
																													
																						| 83 | Oost R V D ,  Sileno G ,  Suarez-Munoz M , et al.  Simoni(smart integrated monitoring) as a novel bioanalytical strategy for water quality assessment: Part I-Model design and effect-based trigger values[J]. Environmental Toxicology and Chemistry, 2017, 36 (9): 2385- 2399. doi: 10.1002/etc.3836
 | 
																													
																						| 84 | Brand W ,  De Jongh C M ,  Linden S C V D , et al.  Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays[J]. Environment International, 2013, 55, 109- 118. doi: 10.1016/j.envint.2013.02.003
 | 
																													
																						| 85 | Escher B I ,  Neale P A ,  Leusch F D L .  Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values[J]. Water Research, 2015, 81, 137- 148. doi: 10.1016/j.watres.2015.05.049
 | 
																													
																						| 86 | Prasse C ,  Stalter D ,  Schulte-Oehlmann U , et al.  Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies[J]. Water Research, 2015, 87, 237- 270. doi: 10.1016/j.watres.2015.09.023
 | 
																													
																						| 87 | Zhang Ying ,  Sun Qing ,  Zhou Jiti , et al.  Reduction in toxicity of wastewater from three wastewater treatment plants to alga(Scenedesmus obliquus) in northeast China[J]. Ecotoxicology and Environmental Safety, 2015, 119, 132- 139. doi: 10.1016/j.ecoenv.2015.04.034
 | 
																													
																						| 88 | Magdeburg A ,  Stalter D ,  Oehlmann J .  Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale postozonation using aquatic key species[J]. Chemosphere, 2012, 88 (8): 1008- 1014. doi: 10.1016/j.chemosphere.2012.04.017
 | 
																													
																						| 89 | Babic S ,  Barisic J ,  Visic H , et al.  Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing[J]. Water Research, 2017, 115, 9- 21. doi: 10.1016/j.watres.2017.02.049
 | 
																													
																						| 90 | Vajda A M ,  Barber L B ,  Gray J L , et al.  Demasculinization of male fish by wastewater treatment plant effluent[J]. Aquatic Toxicology, 2011, 103 (3/4): 213- 221. URL
 | 
																													
																						| 91 | Pohl J ,  Bjorlenius B ,  Brodin T , et al.  Effects of ozonated sewage effluent on reproduction and behavioral endpoints in zebrafish(Danio rerio)[J]. Aquatic Toxicology, 2018, 200, 93- 101. doi: 10.1016/j.aquatox.2018.04.014
 | 
																													
																						| 92 | Maier D ,  Benisek M ,  Blaha L , et al.  Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish[J]. Ecotoxicology and Environmental Safety, 2016, 132, 47- 58. doi: 10.1016/j.ecoenv.2016.04.036
 | 
																													
																						| 93 | Yildirim N C ,  Aksu O ,  Tatar S , et al.  The use of Astacus leptodactylus(Eschscholtz, 1823) as a test species for toxicity evaluation of municipal wastewater treatment plant effluents[J]. Pollution, 2020, 6 (1): 35- 41. URL
 | 
																													
																						| 94 | Barboza L G A ,  Vieira L R ,  Branco V , et al.  Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax(Linnaeus, 1758)[J]. Aquatic Toxicology, 2018, 195, 49- 57. doi: 10.1016/j.aquatox.2017.12.008
 | 
																													
																						| 95 | Mehler W T ,  Li H ,  Lydy M J , et al.  Identifying the causes of sediment-associated toxicity in urban waterways of the Pearl River Delta, China[J]. Environmental Science & Technology, 2011, 45 (5): 1812- 1819. | 
																													
																						| 96 | Li Caixia ,  Chen Qiyu ,  Zhang Xiaoyan , et al.  An integrated approach with the zebrafish model for biomonitoring of municipal wastewater effluent and receiving waters[J]. Water Research, 2018, 131, 33- 44. | 
																													
																						| 97 | Zhang Kun ,  Liang Jiahui ,  Brun N R , et al.  Rapid zebrafish behavioral profiling assay accelerates the identification of environmental neurodevelopmental toxicants[J]. Environmental Science & Technology, 2021, 55 (3): 1919- 1929. | 
																													
																						| 98 | Blalock B J ,  Robinson W E ,  Poynton H C .  Assessing legacy and endocrine disrupting pollutants in Boston Harbor with transcriptomic biomarkers[J]. Aquatic Toxicology, 2020, 220, 105397. doi: 10.1016/j.aquatox.2019.105397
 | 
																													
																						| 99 | Song Yue ,  Chai Tingting ,  Yin Zhiqiang , et al.  Stereoselective effects of ibuprofen in adult zebrafish(Danio rerio) using UPLC-TOF/MSbased metabolomics[J]. Environmental Pollution, 2018, 241, 730- 739. | 
																													
																						| 100 | Tanoue R ,  Nomiyama K ,  Nakamura H , et al.  Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams[J]. Environmental Science & Technology, 2015, 49 (19): 11649- 11658. URL
 | 
																													
																						| 101 | Sherwood T A ,  Medvecky R L ,  Miller C A , et al.  Nonlethal biomarkers of oxidative stress in oiled sediment exposed Southern flounder(Paralichthys lethostigma): Utility for field-base monitoring exposure and potential recovery[J]. Environmental Science & Technology, 2019, 53 (24): 14734- 14743. URL
 | 
																													
																						| 102 | Neale P A ,  Escher B I .  Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays?[J]. Chemosphere, 2014, 108, 281- 288. doi: 10.1016/j.chemosphere.2014.01.053
 | 
																													
																						| 103 | Aristi I ,  Casellas M ,  Elosegi A , et al.  Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms[J]. Environmental Pollution, 2016, 212, 208- 215. doi: 10.1016/j.envpol.2016.01.067
 | 
																													
																						| 104 | 丛佳, 张肖, 赵乐军, 等.  成组生物毒性测试法在水质生物安全性评价中的应用[J]. 天津理工大学学报, 2018, 34 (6): 59- 64. doi: 10.3969/j.issn.1673-095X.2018.06.013
 | 
																													
																						| 105 | 阴琨, 赵淑莉, 郭辰, 等.  淮河流域安徽段水体成组生物毒性评价[J]. 生态毒理学报, 2015, 10 (6): 93- 100. URL
 | 
																													
																						| 106 | Mijangos L ,  Krauss M ,  De Miguel L , et al.  Application of the sea urchin embryo test in toxicity evaluation and effect-directed analysis of wastewater treatment plant effluents[J]. Environmental Science & Technology, 2020, 54 (14): 8890- 8899. URL
 |