UV/TiO2悬浮体系光催化降解碱性品红及机理研究
收稿日期: 2004-01-16
网络出版日期: 2010-10-01
Study on photocatalytic degradation of basic violet and mechanism in UV/TiO2 suspension system
Received date: 2004-01-16
Online published: 2010-10-01
研究了在UV/TiO2悬浮体系中光催化降解碱性品红。考察了碱性品红浓度、悬浮液pH值和外加无机盐对降解效果的影响。实验结果表明,当碱性品红质量浓度分别为20.0mg/L,30.0mg/L,40.0mg/L时,光照180min后,悬浮液中剩余的碱性品红质量浓度分别为1.8mg/L,2.3mg/L,3.4mg/L。pH=9.00时降解效果最好,当初始碱性品红质量浓度为30mg/L时,光照180min后,悬浮液中剩余的碱性品红质量浓度为0.8mg/L;pH=3.00的降解效果最差,光照180min后,悬浮液中剩余的碱性品红质量浓度为6.8mg/L;无机盐对降解效果有不同程度的负面影响。对降解机理的探讨表明光催化反应发生在光催化剂表面。
方建章, 李浩, 廖锦云 . UV/TiO2悬浮体系光催化降解碱性品红及机理研究[J]. 工业水处理, 2004 , 24(8) : 18 -22 . DOI: 10.11894/1005-829x.2004.24(8).18
The photocatalytic degradation of basic violet in UV/TiO2 system is focused on in this study. The effects of the concentration of basic violet, pH value and additive inorganic salt on degradation effeciency have been investigated. The experimental results show that when the initial concentrations of basic violet are 20.0 mg/L, 30.0 mg/L, 40.0 mg/L respectively, the remains of basic violet are 1.8 mg/L, 2.3 mg/L, 3.4 mg/L correspondingly after irradiated for 180 min. The highest and the lowest degradation effeciency are observed when pH value is 9.00 and 3.00 respectively. The inorganic salt has negative impact to different extent on degradation of basic violet. The exploration of the degradation mechanism indicates that photocatalytic degradation takes place on the surface of the photocatalysts.
Key words: ultraviolet/titanium; dioxide; photocatalysis basic violet
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238 (5 358): 37 - 38
[2] Wang K H, Hsieh Y H, Chou M Y, et al. Photocatalytic degradation of 2 - chloro and 2 - nitrophenol by titanium dioxide suspensions in aqueous solution [J]. Appl. Catal. B, 1999,21 (1): 1 - 8
[3] Okte A N, Resat M S, Inel Y. Photocatalytic degradation of 1,3-Dihydroxy- 5- methoxybenzene in aqueous suspensions of TiO2:a initial kinetic study[J]. J. Catal., 2001,198(2): 172-178
[4] Idil A, Isil A B, Detlef W B. Heterogeneous photo-catalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts [J].Appl. Catal. B: environmental, 2000,26 (3): 193 - 206
[5] David F O, Ezio P, Nick S. Destruction of water contaminates[J].Environ. Sci. Technol., 1991,25(9): 1 523-1 529
[6] Rita T, Nick S, Claudio M, et al. Kinetic studies in heterogeneous photocatalysis 4. The photomineralization of a hydroquinone and a catechol [J]. J. Photochem. Photobiol. A: Chem., 1990,55 (2):243 -249
[7] Shea K E O′,Pernas E, Saiers J. The influence of mineralization products on the coagulation of TiO2 photocatalyst[J]. Langmuir, 1999,15(6):2 071-2 076
[8] Rita T, Nick S, Claudio M, et al. Photocatalyzed mineralization of cresols in aqueous media with irradiated titania[J]. J. Catal., 1991,128(2) :352-365
[9] Ward M D,White J R, Bard A J. Electrochemical investigation of the energetics of particulate TiO2 photocatalysts. The methyl viologen - acetate system[J]. J. Am. Chem. Soc., 1983,105(1): 27 - 31
[10] Yang T C-K, Wang S-F, Tsai S H-Y, et al. Intrinsic photoca-talytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectace infrared fourier transform spectroscopy[J]. Appl.Catal. B, 2001,30(3/4): 293-301
[11] Soonhyun K, Wongyong C. Kinetics and mechanisms of photocatalytic degradation of(CH3)nNH4-n+ (0 ≤n ≤4) in TiO2 suspension: The role of OH radicals[J]. Environ. Sci. Technol., 2002,36(9):2 019-2 025
/
〈 |
|
〉 |