Newest research progress in the application of zero-valent iron to the treatment of wastewater
Received date: 2009-12-28
Online published: 2019-06-03
Zero-valent iron(ZVI) has been paid more and more attention to its application to the wastewater treatment due to its low toxicity, low cost, easy operation and no second pollution producing. The mechanism of wastewater treatment with ZVI is introduced. And the newest research progress in treating various kinds of wastewaters with ZVI is reviewed. These wastewaters include heavy metal wastewater, azo dye wastewater, chloro-organic compound wastewater, nitro-aromatic compounds and nitrate wastewaters, etc. Very good results have been obtained by using ZVI for treating these wastewaters. At the end, further research directions of ZVI are forecast. These research directions include the research on nano scale ZVI, the mechanism of pollutant removal with ZVI and the combined usage of ZVI with other techniques.
Key words: zero-valent iron; wastewater treatment; micro-electrolysis
Fu Fenglian . Newest research progress in the application of zero-valent iron to the treatment of wastewater[J]. Industrial Water Treatment, 0 : 1 -3,4 . DOI: 10.11894/1005-829x.2010.30(6).1
[1] Ludwig R D, Smyth D J A, Blowes D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB[J]. Environ. Sci. Technol.,2009, 43(6):1970-1976.
[2] Lien H L, Wilkin R T. High-level arsenite removal from groundwater by zero-valent iron[J]. Chemosphere, 2005, 59(3): 377-386.
[3] Lackovic J A, Nikolaidis N P, Dobbs G M. Inorganic arsenic removal by zero-valent iron[J]. Environ. Eng. Sci., 2000, 17(1): 29-39.
[4] Leupin O X, Hug S J, Badruzzaman A B M. Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand[J]. Environ. Sci. Technol., 2005, 39(20): 8032-8037.
[5] Nikolaidis N P, Dobbs G M, Lackovic J A. Arsenic removal by zero-valent iron: field, laboratory and modeling studies [J]. Water Res., 2003, 37(6): 1417-1425.
[6] Leupin O X, Hug S J. Oxidation and removal of arsenic (Ⅲ) from aerated groundwater by filtration through sand and zero-valent iron [J]. Water Res., 2005, 39(9): 1729-1740.
[7] Bang S, Johnson M D, Korfiatis G P, et al. Chemical reactions between arsenic and zero-valent iron in water [J]. Water Res., 2005, 39(5):763-770.
[8] Liu Haining, Li Guoting, Que Jiuhui, et al. Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound[J]. J. Hazard. Mater., 2007, 144 (1/2): 180-186.
[9] Lin Yaotang, Weng Chihuang, Chen Fangying. Effective removal of AB24 dye by nano/micro-size zero-valent iron [J]. Sep. Purif. Technol., 2008, 64(1):26-30.
[10] Zhou Tao, Lu Xiaohua, Wang Jia, et al. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy[J]. J. Hazard. Mater., 2009,165(1/2/3):193-199.
[11] Nam S, Tratnyek P G. Reduction of azo dyes with zero-valent iron[J]. Water Res., 2000, 34(6): 1837-1845.
[12] Epolito W J, Yanga H, Bottomley L A, et al. Kinetics of zerovalent iron reductive transformation of the anthraquinone dye Reactive Blue 4[J]. J. Hazard. Mater., 2008, 160(2/3):594-600.
[13] Senzaki T, Yasuo K. Removal of organochloro compounds by reductive treatment -treatment of 1,1,2,2 -tetrachloroethane with iron powder[J]. Kogyo Yousui, 1988, 357(2-7): 1-12.
[14] Gillham R W, O’Hannesin S F. Metalcatalysed abiotic degradation of halogenated organic compounds[C]// International Association of Hydrologists Conference:Modern Trends in Hydrogeology. Hamilton, Ontario, Canada:1992:1-10.
[15] Wang Zhiyuan, Peng Ping’an, Huang Weilin. Dechlorination of γ-hexachlorocyclohexane by zero-valent metallic iron [J]. J. Hazard. Mater., 2009, 166(2/3): 992-997.
[16] 陈宜菲, 陈少瑾. Fe0 还原土壤中不同结构甲基和氯代硝基苯[J]. 环境科学与管理, 2008, 33(11): 69-71.
[17] Hundal L S, Singh J, Bier E L, et al. Removal of TNT and RDX from water and soil using iron metal[J]. Environ. Pollut., 1997, 97(1/2):55-64.
[18] Keum Y S, Li Q. Reduction of nitroaromatic pesticides with zerovalent iron[J]. Chemosphere, 2004, 54(3):255-263.
[19] 王国贤. 零价铁还原硝基苯的反应机理及影响因素[J]. 水资源保护, 2007, 23(4): 85-87.
[20] Su C, Puls R W. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environ. Sci. Technol., 2004, 38(9): 2715-2720.
[21] Alowitz M J, Scherer M M. Kinetics of nitrate, nitrite and Cr(Ⅵ) reduction by iron metal[J]. Environ. Sci. Technol., 2002, 36(3):299-306.
[22] Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, et al. Kinetics of the chemical reduction of nitrate by zero-valent iron [J]. Chemosphere,2009,74(6): 804-809.
[23] 程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展[J]. 化学进展, 2006(18): 93-99.
[24] Zhang Xin, Lin Yuman, Chen Zuliang. 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valentiron[J]. J. Hazard. Mater., 2009, 165(1/2/3): 923-927.
[25] Huang Qingguo, Shi Xiangyang, Pinto R A, et al. Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications [J]. Environ. Sci. Technol., 2008, 42(23): 8884-8889.
[26] Barreto-Rodrigues M, Silva F T, Paiva T C B. Combined zerovalentiron and Fenton processes for the treatment of Brazilian TNT industry wastewater [J]. J. Hazard. Mater., 2009, 165(1/2/3): 1224-1228.
[27] 汤心虎, 黄丽莎, 莫测辉, 等. 超声波协同零价铁降解活性艳红X-3B [J]. 环境科学, 2006, 27(6):1123-1126.
[28] Zhang Hui, Duan Lijie, Zhang Yi, et al. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zerovalentiron [J]. Dyes and Pigments, 2005, 65(1):39-43.
/
〈 | 〉 |