1 |
VARIS O, VAKKILAINEN P. China’s 8 challenges to water resources management in the first quarter of the 21st Century[J]. Geomorphology, 2001, 41(2/3):93-104. doi: 10.1016/s0169-555x(01)00107-6
|
2 |
刘丹,刘琼琼,周滨,等. 工业高盐废水零排放与资源化利用的研究进展[J]. 现代化工,2021,41(10):19-22.
|
|
LIU Dan, LIU Qiongqiong, ZHOU Bin,et al. Research progress on zero discharge and utilization of high salinity industrial wastewater[J]. Modern Chemical Industry,2021,41(10):19-22.
|
3 |
HUANG Runyao, SHEN Ziheng, WANG Hongtao,et al. Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta:Perspectives on regional discrepancies[J]. Applied Energy, 2021, 297(C):S0306261921005389. doi: 10.1016/j.apenergy.2021.117087
|
4 |
ALNOURI S Y, LINKE P, EL-HALWAGI M M. Accounting for central and distributed zero liquid discharge options in interplant water network design[J]. Journal of Cleaner Production, 2018, 171:644-661. doi: 10.1016/j.jclepro.2017.09.236
|
5 |
TONG Tiezheng, ELIMELECH M. The global rise of zero liquid discharge for wastewater management:Drivers,technologies,and future directions[J]. Environmental Science & Technology, 2016, 50(13):6846-6855. doi: 10.1021/acs.est.6b01000
|
6 |
AZIMIBAVIL S, JAFARIAN A. Heat transfer evaluation and economic characteristics of falling film brine concentrator in zero liquid discharge processes[J]. Journal of Cleaner Production, 2021, 285:124892. doi: 10.1016/j.jclepro.2020.124892
|
7 |
MANSOUR F, ALNOURI S Y, AL-HINDI M,et al. Screening and cost assessment strategies for end-of-pipe Zero Liquid Discharge systems[J]. Journal of Cleaner Production, 2018, 179:460-477. doi: 10.1016/j.jclepro.2018.01.064
|
8 |
XU Jun, XIE Junxian, CHENG Zheng,et al. Source apportionment of pulping wastewater and application of mechanical vapor recompression:Environmental and economic analyses[J]. Journal of Environmental Management, 2021, 292:112740. doi: 10.1016/j.jenvman.2021.112740
|
9 |
ZHOU Yasu, SHI Chengjun, DONG Guoqiang. Analysis of a mechanical vapor recompression wastewater distillation system[J]. Desalination, 2014, 353:91-97. doi: 10.1016/j.desal.2014.09.013
|
10 |
YANG Junling, ZHANG Chong, ZHANG Zhentao,et al. Electroplating wastewater concentration system utilizing mechanical vapor recompression[J]. Journal of Environmental Engineering, 2018, 144(7):04018053. doi: 10.1061/(asce)ee.1943-7870.0001380
|
11 |
ELSAYED M L, WU Wei, CHOW L C. High salinity seawater boiling point elevation:Experimental verification[J]. Desalination, 2021, 504:114955. doi: 10.1016/j.desal.2021.114955
|
12 |
HAN Dong, HE Weifeng, YUE Chen,et al. Study on desalination of zero-emission system based on mechanical vapor compression[J]. Applied Energy, 2017, 185:1490-1496. doi: 10.1016/j.apenergy.2015.12.061
|
13 |
HAN Dong, YUE Chen, HE Weifeng,et al. Energy saving analysis for a solution evaporation system with high boiling point elevation based on self-heat recuperation theory[J]. Desalination, 2015, 355:197-203. doi: 10.1016/j.desal.2014.10.044
|
14 |
LIANG Lin, HAN Dong, MA Ran,et al. Treatment of high-concentration wastewater using double-effect mechanical vapor recompression[J]. Desalination, 2013, 314:139-146. doi: 10.1016/j.desal.2013.01.016
|
15 |
YUE Chen, WANG Bin, ZHU Banshou. Thermal analysis for the evaporation concentrating process with high boiling point elevation based exhaust waste heat recovery[J]. Desalination, 2018, 436:39-47. doi: 10.1016/j.desal.2018.02.010
|
16 |
刘燕,裴程林,王建达,等. 高沸点升溶液蒸发系统的设计与分析[J]. 过程工程学报,2017,17(4):859-865.
|
|
LIU Yan, PEI Chenglin, WANG Jianda,et al. Design and analysis of an evaporation system of solutions with high boiling point elevation[J]. The Chinese Journal of Process Engineering,2017,17(4):859-865.
|
17 |
VON EIFF D, WONG P W, GAO Yonggang,et al. Technical and economic analysis of an advanced multi-stage flash crystallizer for the treatment of concentrated brine[J]. Desalination, 2021, 503:114925. doi: 10.1016/j.desal.2020.114925
|
18 |
JIANG Jun, YANG Houwen, LIU Feng,et al. Analysis of thermal and water equilibrium and desulfurization efficiency after waste heat recovered from a wet flue gas desulfurization system[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(2):e2413. doi: 10.1002/apj.2413
|
19 |
DOGBE E S, MANDEGARI M, GÖRGENS J F. Assessment of the thermodynamic performance improvement of a typical sugar mill through the integration of waste-heat recovery technologies[J]. Applied Thermal Engineering, 2019, 158:113768. doi: 10.1016/j.applthermaleng.2019.113768
|
20 |
GAO Xiaoxin, GU Qiang, MA Jiangquan,et al. MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture[J]. Energy, 2018, 143:658-665. doi: 10.1016/j.energy.2017.11.041
|
21 |
HAN Dong, HE Weifeng, YUE Chen,et al. Analysis of energy saving for ammonium sulfate solution processing with self-heat recuperation principle[J]. Applied Thermal Engineering, 2014, 73(1):641-649. doi: 10.1016/j.applthermaleng.2014.08.026
|
22 |
裴程林,赵桂锋,张少峰,等. 分级压缩MVR系统分析[J]. 节能,2018,37(9):78-82.
|
|
PEI Chenglin, ZHAO Guifeng, ZHANG Shaofeng,et al. Exergy analysis of hierarchical compression MVR system[J]. Energy Conservation,2018,37(9):78-82.
|
23 |
|
|
JIANG Hua, ZHANG Ziyao, GONG Wuqi. Design and research of MVR parallel double-effect evaporation crystallization system[J]. Chemical Industry and Engineering Progress, 2019, 38(10):4461-4469. doi: 10.1016/j.applthermaleng.2020.115646
|
24 |
LI Yahui, ZHANG Xiaofei, WANG Yilin,et al. Feasibility study of multi-effect distillation dealing with high-salinity organic RO concentrates:Experiment and theoretical analysis[J]. Desalination, 2021, 505:115007. doi: 10.1016/j.desal.2021.115007
|
25 |
LI Shuangfei, LIU Zhenhua, SHAO Zhixiong,et al. Performance study on a passive solar seawater desalination system using multi-effect heat recovery[J]. Applied Energy, 2018, 213:343-352. doi: 10.1016/j.apenergy.2018.01.064
|
26 |
ZEJLI D, OUAMMI A, SACILE R,et al. An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system[J]. Applied Energy, 2011, 88(11):4042-4054. doi: 10.1016/j.apenergy.2011.04.031
|
27 |
GUDE V G. Energy storage for desalination processes powered by renewable energy and waste heat sources[J]. Applied Energy, 2015, 137:877-898. doi: 10.1016/j.apenergy.2014.06.061
|
28 |
MACEDONIO F, KATZIR L, GEISMA N,et al. Wind-aided intensified evaporation(WAIV) and membrane crystallizer(MCr) integrated brackish water desalination process:Advantages and drawbacks[J]. Desalination, 2011, 273(1):127-135. doi: 10.1016/j.desal.2010.12.002
|
29 |
ZHANG Xiaodong, HU Dapeng, LI Zhiyi. Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat[J]. Applied Thermal Engineering, 2014, 62(1):239-244. doi: 10.1016/j.applthermaleng.2013.09.015
|