1 |
DU Zhaolin, ZHENG Tong, WANG Peng,et al. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water[J]. Bioresource Technology, 2016, 201:41-49. doi: 10.1016/j.biortech.2015.11.009
|
2 |
SARKAR S, SARKAR S, BISWAS P. Effective utilization of iron ore slime,a mining waste as adsorbent for removal of Pb(Ⅱ) and Hg(Ⅱ)[J]. Journal of Environmental Chemical Engineering, 2017, 5(1):38-44. doi: 10.1016/j.jece.2016.11.015
|
3 |
CHU Yuting, KHAN M A, XIA Mingzhu,et al. Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(Ⅱ) and copper(Ⅱ) adsorption from wastewater[J]. Chemical Engineering Research and Design, 2020, 157:142-152. doi: 10.1016/j.cherd.2020.02.020
|
4 |
GHASEMI S S, HADAVIFAR M, MALEKI B,et al. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs[J]. Journal of Water Process Engineering, 2019, 32:100965. doi: 10.1016/j.jwpe.2019.100965
|
5 |
SILVETTI M, CASTALDI P, GARAU G,et al. Sorption of cadmium(Ⅱ) and zinc(Ⅱ) from aqueous solution by water treatment residuals at different pHs[J]. Water,Air,& Soil Pollution, 2015, 226(9):1-13. doi: 10.1007/s11270-015-2578-0
|
6 |
LIU Liheng, LIU Xiu, WANG Dunqiu,et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257:120562. doi: 10.1016/j.jclepro.2020.120562
|
7 |
WANG Lele, YUAN Xingzhong, ZHONG Hua,et al. Release behavior of heavy metals during treatment of dredged sediment by microwave-assisted hydrogen peroxide oxidation[J]. Chemical Engineering Journal, 2014, 258:334-340. doi: 10.1016/j.cej.2014.07.098
|
8 |
FANG Xiaojie, ZHU Sidi, MA Jianzhe,et al. The facile synthesis of zoledronate functionalized hydroxyapatite amorphous hybrid nanobiomaterial and its excellent removal performance on Pb 2+ and Cu 2+ [J]. Journal of Hazardous Materials, 2020, 392:122291. doi: 10.1016/j.jhazmat.2020.122291
|
9 |
HAMAD H, EL-LATIF M ABD, KASHYOUT A E H,et al. Optimizing the preparation parameters of mesoporous nanocrystalline titania and its photocatalytic activity in water:Physical properties and growth mechanisms[J]. Process Safety and Environmental Protection, 2015, 98:390-398. doi: 10.1016/j.psep.2015.09.011
|
10 |
ZHOU Yafeng, HAYNES R J. Removal of Pb(Ⅱ),Cr(Ⅲ) and Cr(Ⅵ) from aqueous solutions using alum-derived water treatment sludge[J]. Water,Air,& Soil Pollution, 2011, 215(1/2/3/4):631-643. doi: 10.1007/s11270-010-0505-y
|
11 |
ZENG Guangyong, HE Yi, ZHAN Yingqing,et al. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal[J]. Journal of Hazardous Materials, 2016, 317:60-72. doi: 10.1016/j.jhazmat.2016.05.049
|
12 |
PANAYOTOVA T, DIMOVA-TODOROVA M, DOBREVSKY I. Purification and reuse of heavy metals containing wastewaters from electroplating plants[J]. Desalination, 2007, 206(1/2/3):135-140. doi: 10.1016/j.desal.2006.03.563
|
13 |
SOBHANARDAKANI S, JAFARI A, ZANDIPAK R,et al. Removal of heavy metal〔Hg(Ⅱ) and Cr(Ⅵ)〕 ions from aqueous solutions using Fe 2O 3@SiO 2 thin films as a novel adsorbent[J]. Process Safety and Environmental Protection, 2018, 120:348-357. doi: 10.1016/j.psep.2018.10.002
|
14 |
QIU Fuguo, WANG Juanli, ZHAO Dongye,et al.Adsorption of myo-inositol hexakisphosphate in water using recycled water treatment residual[J]. Environmental Science and Pollution Research International, 2018, 25(29):29593-29604. doi: 10.1007/s11356-018-2971-5
|
15 |
MAKRIS K C, SARKAR D, PARSONS J G,et al. X-ray absorption spectroscopy as a tool investigating arsenic(Ⅲ) and arsenic(Ⅴ) sorption by an aluminum-based drinking-water treatment residual[J]. Journal of Hazardous Materials, 2009, 171(1/2/3):980-986. doi: 10.1016/j.jhazmat.2009.06.102
|
16 |
马晨阳,段润斌,杜震宇. 净水厂干化铝污泥对水中Pb2+和Cu2+的吸附研究[J]. 工业水处理,2020,40(2):59-62.
|
|
MA Chenyang, DUAN Runbin, DU Zhenyu. Adsorption of Pb2+ and Cu2+ in water by dried alum-sludge from a water treatment plant[J]. Industrial Water Treatment,2020,40(2):59-62.
|
17 |
HOVSEPYAN A, BONZONGO J C J. Aluminum drinking water treatment residuals(Al-WTRs) as sorbent for mercury:Implications for soil remediation[J]. Journal of Hazardous Materials, 2009, 164(1):73-80. doi: 10.1016/j.jhazmat.2008.07.121
|
18 |
MAKRIS K C, SARKAR D, DATTA R. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic[J]. Chemosphere, 2006, 64(5):730-741. doi: 10.1016/j.chemosphere.2005.11.054
|
19 |
CAPORALE A G, PUNAMIYA P, PIGNA M,et al. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions[J]. Journal of Hazardous Materials, 2013, 260:644-651. doi: 10.1016/j.jhazmat.2013.06.023
|
20 |
ELZINGA E J, SPARKS D L. Reaction condition effects on nickel sorption mechanisms in illite-water suspensions[J]. Soil Science Society of America Journal, 2001, 65(1):94-101. doi: 10.2136/sssaj2001.65194x
|
21 |
YANG Weichun, TANG Qiongzhi, WEI Jingmiao,et al. Enhanced removal of Cd(Ⅱ) and Pb(Ⅱ) by composites of mesoporous carbon stabilized alumina[J]. Applied Surface Science, 2016, 369:215-223. doi: 10.1016/j.apsusc.2016.01.151
|
22 |
ÇORUH S, ŞENEL G, ERGUN O N. A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal[J]. Journal of Hazardous Materials, 2010, 180(1/2/3):486-492. doi: 10.1016/j.jhazmat.2010.04.056
|
23 |
王哲,黄国和,安春江,等. Cu2+、Cd2+、Zn2+在高炉水淬渣上的竞争吸附特性[J]. 化工进展,2015,34(11):4071-4078.
|
|
WANG Zhe, HUANG Guohe, AN Chunjiang,et al. Competitive adsorption characteristics of water-quenched blast furnace slag(WBFS) towards Cu2+,Cd2+ and Zn2+ [J]. Chemical Industry and Engineering Progress,2015,34(11):4071-4078.
|
24 |
LIU Changkun, BAI Renbi, SAN LY Q.Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent:Behaviors and mechanisms[J]. Water Research, 2008, 42(6/7):1511-1522. doi: 10.1016/j.watres.2007.10.031
|