1 |
侯纯扬,武杰,赵楠,等. 海水循环冷却系统腐蚀、污垢和菌藻控制技术研究[J]. 海洋技术,2002,21(4):46-50.
|
|
HOU Chunyang, WU Jie, ZHAO Nan,et al. Corrosion control,fouling deposit control and biofouling control in the seawater circulating cooling system[J]. Ocean Technology,2002,21(4):46-50.
|
2 |
SHARQAWY M H, LIENHARD J H V, ZUBAIR S M. On thermal performance of seawater cooling towers[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4):DOI:10.1115/IHTC14-23200. doi: 10.1115/1.4002159
|
3 |
张益. 特大型海水冷却塔在宁海电厂的应用[C]//全国火电600 mW级机组能效对标及竞赛第十七届年会论文集.安徽芜湖:中国电力企业联合会科技开发服务中心,2013:65-71.
|
4 |
张益. 微砂沉淀技术在海水处理中的应用[J]. 浙江电力,2012,31(8):76-78.
|
|
ZHANG Yi. Application of micro-sand precipitation technology in seawater treatment[J]. Zhejiang Electric Power,2012,31(8):76-78.
|
5 |
阳明,关秀彦,罗奖合,等. 万吨级海水循环冷却系统特点和运行经验[J]. 热力发电,2007,36(8):88-90.
|
|
YANG Ming, GUAN Xiuyan, LUO Jianghe,et al. Features and operation experience of a 10 000 t/h seawater circulation cooling system[J]. Thermal Power Generation,2007,36(8):88-90.
|
6 |
杨天笑,严涛,陈池,等. 大型海洋污损生物对金属材料腐蚀影响及研究展望[J]. 工业安全与环保,2013,39(11):69-71.
|
|
YANG Tianxiao, YAN Tao, CHEN Chi,et al. Research on the effects of marine macro-fouling organisms on metal corrosion[J]. Industrial Safety and Environmental Protection,2013,39(11):69-71.
|
7 |
RUBIO D, CASANUEVA J F, NEBOT E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system[J]. Applied Thermal Engineering, 2015, 85:124-134. doi: 10.1016/j.applthermaleng.2015.03.080
|
8 |
RUBIO D, LÓPEZ-GALINDO C, CASANUEVA J F,et al. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system[J]. Applied Thermal Engineering, 2014, 67(1/2):378-387. doi: 10.1016/j.applthermaleng.2014.03.057
|
9 |
刘姗姗,严涛. 海洋污损生物防除的现状及展望[J]. 海洋学研究,2006,24(4):53-60.
|
|
LIU Shanshan, YAN Tao. A review on the present situation and outlook of marine anti-fouling[J]. Journal of Marine Sciences,2006,24(4):53-60.
|
10 |
王林华,段健诚,邓高威,等. 海洋污损生物附着机制及防治方法[J]. 齐鲁渔业,2019,36(12):38-40.
|
11 |
金晓鸿. 海洋污损生物防除技术和发展(Ⅱ):各种海洋设施的防污[J]. 材料开发与应用,2005,20(6):44-46.
|
|
JIN Xiaohong. Technology and development of marine fouling organisms (Ⅱ):Anti-fouling of various marine facilities[J]. Development and Application of Materials,2005,20(6):44-46.
|
12 |
胥震,欧阳清,易定和. 海洋污损生物防除方法概述及发展趋势[J]. 腐蚀科学与防护技术,2012,24(3):192-198.
|
|
XU Zhen, OUYANG Qing, YI Dinghe. Antifouling method of marine fouling organisms:A review[J]. Corrosion Science and Protection Technology,2012,24(3):192-198.
|
13 |
|
|
LU Hongtao, ZHANG Qinchuan. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. doi: 10.16337/j.1004-9037.2016.01.001
|
14 |
|
|
|
15 |
常亮,邓小明,周明全,等. 图像理解中的卷积神经网络[J]. 自动化学报,2016,42(9):1300-1312.
|
|
CHANG Liang, DENG Xiaoming, ZHOU Mingquan,et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica,2016,42(9):1300-1312.
|
16 |
IBRAHIM R, SHAFIQ M. Explainable convolutional neural networks:A taxonomy,review,and future directions[J]. ACM Computing Surveys, 2023, 55(10):1-37. doi: 10.1145/3563691
|
17 |
|
|
LU Hongtao, ZHANG Qinchuan. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. doi: 10.16337/j.1004-9037.2016.01.001
|
18 |
杨婷婷,高乾,李浩千,等. 基于卷积神经网络-长短时记忆神经网络的磨煤机故障预警[J]. 热力发电,2022,51(10):122-129.
|
|
YANG Tingting, GAO Qian, LI Haoqian,et al. Coal mill fault early warning technology based on CNN-LSTM network[J]. Thermal Power Generation,2022,51(10):122-129.
|
19 |
张菲菲,应雨龙,李靖超. 基于双通道特征融合并行优化的燃气轮机气路故障诊断方法[J]. 热力发电,2022,51(12):30-38.
|
|
ZHANG Feifei, YING Yulong, LI Jingchao. A gas path fault diagnosis method for gas turbine based on parallel optimization of dual-channel feature fusion[J]. Thermal Power Generation,2022,51(12):30-38.
|
20 |
刘钢,李晓东,金轶群,等. 基于深度卷积神经网络的工业循环冷却水系统运行状态预测[J]. 热力发电,2022,51(8):149-153.
|
|
LIU Gang, LI Xiaodong, JIN Yiqun,et al. Operation state prediction for industrial circulating cooling water system based on deep convolutional neural network[J]. Thermal Power Generation,2022,51(8):149-153.
|
21 |
钱虹,王建棋,徐邦智,等. 基于数据驱动建模的核电站一回路管道劣化趋势研究[J]. 热力发电,2022,51(6):82-88.
|
|
QIAN Hong, WANG Jianqi, XU Bangzhi,et al. Research on deterioration trend of primary pipeline in nuclear power plant based on data-driven modeling[J]. Thermal Power Generation,2022,51(6):82-88.
|
22 |
WAIBEL A, HANAZAWA T, HINTON G,et al. Phoneme recognition using time-delay neural networks[M]// Readings in Speech Recognition. Amsterdam:Elsevier, 1990:393-404. doi: 10.1016/b978-0-08-051584-7.50037-1
|
23 |
RUSSAKOVSKY O, DENG Jia, SU Hao,et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. doi: 10.1007/s11263-015-0816-y
|
24 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/tpami.2016.2572683
|
25 |
KARPATHY A, TODERICI G, SHETTY S,et al. Large-scale video classification with convolutional neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus,OH,USA. IEEE, 2014:1725-1732. doi: 10.1109/cvpr.2014.223
|
26 |
YOSINSKI J, CLUNE J, BENGIO Y,et al. How transferable are features in deep neural networks[J]. MIT Press,2014(2):3320-3328.
|
27 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/tpami.2016.2644615
|
28 |
GREGOR K, DANIHELKA I, GRAVES A,et al. DRAW:A recurrent neural network for image generation[J]. ArXiv,2015:1502.04623.
|
29 |
董晓伟,姜国良,李立德,等. 牡蛎综合利用的研究进展[J]. 海洋科学,2004,28(4):62-65.
|
|
DONG Xiaowei, JIANG Guoliang, LI Lide,et al. Research progress on comprehensive utilization of oysters[J]. Marine Sciences,2004,28(4):62-65.
|