1 |
BP PLC. BP statistical review of world energy[R]. London:BP PLC,2024.
|
2 |
IPCC. Climate change 2013:The physical science basis working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2014:463-465. doi: 10.1017/cbo9781107415324
|
3 |
|
|
HAO Xiaodi, YANG Zhenli, YU Wenbo,et al. N 2O emission from the processes of wastewater treatment:Mechanisms and control strategies[J]. Environmental Science, 2023, 44(2):1163-1173. doi: 10.13671/j.hjkxxb.2023.0035
|
4 |
MONTZKA S, FRASER P, BUTLER J,et al. Scientific assessment of ozone depletion:2002[R]. Geneva:WMO,2003.
|
5 |
VASILAKI V, VOLCKE E I P, NANDI A K,et al. Relating N 2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques[J]. Water Research, 2018, 140:387-402. doi: 10.1016/j.watres.2018.04.052
|
6 |
CATHERINE E, CHRISTOPHER E, NATHAN B,et al. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Switzerland:Intergovernmental Panel on Climate Change, 2019. doi: 10.21513/0207-2564-2019-2-05-13
|
7 |
中国城镇供水排水协会组织. 城镇水务系统碳核算与减排路径技术指南[M]. 北京:中国建筑工业出版社,2022:50-51.
|
8 |
阿里亚·阿不力米提,王鹏宇,王秀蘅. 基于文献统计和模型拟合的污水处理厂N2O排放因子[J]. 环境科学,2024,45(7):4063-4073.
|
|
ABULIMITI A, WANG Pengyu, WANG Xiuheng. N2O emission factors from wastewater treatment plants based on literature statistics and model fitting[J]. Environmental Science,2024,45(7):4063-4073.
|
9 |
YANG Chunxue, LIU Wenzong, HE Zhangwei,et al. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1:Acceleration on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2015, 175:509-516. doi: 10.1016/j.biortech.2014.10.154
|
10 |
|
|
MENG Xiaojun, GE Guanghuan, WANG Yaping,et al. Diversity and functional regulation of nitrogen and phosphorus removal bacteria in wastewater biological treatment systems[J]. Industrial Water Treatment, 2024, 44(11):17-26. doi: 10.19965/j.cnki.iwt.2024-0373
|
11 |
VIEIRA A, GALINHA C F, OEHMEN A,et al. The link between nitrous oxide emissions,microbial community profile and function from three full-scale WWTPs[J]. Science of the Total Environment, 2019, 651:2460-2472. doi: 10.1016/j.scitotenv.2018.10.132
|
12 |
YAN Xu, LI Lin, LIU Junxin. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes[J]. Journal of Environmental Sciences, 2014, 26(2):256-263. doi: 10.1016/s1001-0742(13)60429-5
|
13 |
REN Y G, WANG J H, LI H F,et al. Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants[J]. Environmental Technology, 2013, 34(21):2917-2927. doi: 10.1080/09593330.2012.696717
|
14 |
WANG Yayi, LIN Ximao, ZHOU Dong,et al. Nitric oxide and nitrous oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process[J]. Chemical Engineering Journal, 2016, 289:330-340. doi: 10.1016/j.cej.2015.12.074
|
15 |
SUN Shichang, CHENG Xiang, LI Sha,et al. N 2O emission from full-scale urban wastewater treatment plants:A comparison between A 2O and SBR[J]. Water Science and Technology, 2013, 67(9):1887-1893. doi: 10.2166/wst.2013.066
|
16 |
WARD B B, O’MULLAN G D. Community level analysis:Genetic and biogeochemical approaches to investigate community composition and function in aerobic ammonia oxidation[J]. Methods in Enzymology, 2005, 397:395-413. doi: 10.1016/s0076-6879(05)97024-9
|
17 |
YUE Xiu, YU Guangping, LIU Zhuhan,et al. Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254:347-352. doi: 10.1016/j.biortech.2018.01.107
|
18 |
XIE Ning, ZHONG Liping, OUYANG Liao,et al. Community composition and function of bacteria in activated sludge of municipal wastewater treatment plants[J]. Water, 2021, 13(6):852. doi: 10.3390/w13060852
|
19 |
FAN Leilei, SUN Fulin. Nitrogen metabolism potential in biofilm microbial communities:Potential applications in the mariculture wastewater treatment[J]. Aquacultural Engineering, 2024, 104:102387. doi: 10.1016/j.aquaeng.2023.102387
|
20 |
NIERYCHLO M, ANDERSEN K S, XU Yijuan,et al. MiDAS 3:An ecosystem-specific reference database,taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge[J]. Water Research, 2020, 182:115955. doi: 10.1016/j.watres.2020.115955
|
21 |
|
|
WANG Minquan, ZHOU Songwei, CHEN Zhenguo,et al. Failure cause analysis and solution of introduced Anammox denitrification system[J]. Industrial Water Treatment, 2023, 43(12):96-100. doi: 10.19965/j.cnki.iwt.2023-0588
|
22 |
施庆还. 海绵铁基生物滞留池强化脱氮性能及系统稳定性研究[D]. 南京:南京林业大学,2023.
|
|
SHI Qinghuan. Study on enhanced nitrogen removal performance and system stability of sponge iron-based biological retention tank[D]. Nanjing:Nanjing Forestry University,2023.
|
23 |
|
|
PENG Yongzhen, WANG Mingqi, PENG Yi,et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent:System performance and microbial communities[J]. Journal of Beijing University of Technology, 2021, 47(10):1158-1166. doi: 10.11936/bjutxb2020010016
|
24 |
EBOMAH K E, OKOH A I. An African perspective on the prevalence,fate and effects of carbapenem resistance genes in hospital effluents and wastewater treatment plant(WWTP) final effluents:A critical review[J]. Heliyon, 2020, 6(5):e03899. doi: 10.1016/j.heliyon.2020.e03899
|
25 |
VERMEULEN L C, BRANDSEMA P S, VAN DE KASSTEELE J,et al. Atmospheric dispersion and transmission of Legionella from wastewater treatment plants:A 6-year case-control study[J]. International Journal of Hygiene and Environmental Health, 2021, 237:113811. doi: 10.1016/j.ijheh.2021.113811
|
26 |
ZHANG Chongmiao, XU Limei, MOU Xiao,et al. Characterization and evolution of antibiotic resistance of Salmonella in municipal wastewater treatment plants[J]. Journal of Environmental Management, 2019, 251:109547. doi: 10.1016/j.jenvman.2019.109547
|
27 |
GUMAELIUS L, MAGNUSSON G, PETTERSSON B,et al. Comamonas denitrificans sp. nov.,an efficient denitrifying bacterium isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(3):999-1006. doi: 10.1099/00207713-51-3-999
|
28 |
DONG Qian, LIU Yanchen, SHI Hanchang,et al. Effects of graphite nanoparticles on nitrification in an activated sludge system[J]. Chemosphere, 2017, 182:231-237. doi: 10.1016/j.chemosphere.2017.04.144
|
29 |
ZHANG Jinsen, LIU Guohua, WEI Qi,et al. Regional discrepancy of microbial community structure in activated sludge system from Chinese WWTPs based on high-throughput 16S rDNA sequencing[J]. Science of the Total Environment, 2022, 818:151751. doi: 10.1016/j.scitotenv.2021.151751
|
30 |
SUI Qianwen, DI Fei, ZHANG Junya,et al. A single-stage membrane aerated biofilm reactor achieving the combination of partial nitritation/Anammox and enhanced biological phosphorus removal[J]. Journal of Water Process Engineering, 2024, 58:104933. doi: 10.1016/j.jwpe.2024.104933
|
31 |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276. doi: 10.1038/nrmicro.2018.9
|
32 |
CHANDRAN K, STEIN L Y, KLOTZ M G,et al. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems[J]. Biochemical Society Transactions, 2011, 39(6):1832-1837. doi: 10.1042/bst20110717
|
33 |
JONES C M, GRAF D R H,BRU D,et al. The unaccounted yet abundant nitrous oxide-reducing microbial community:A potential nitrous oxide sink[J]. The ISME Journal, 2013, 7(2):417-426. doi: 10.1038/ismej.2012.125
|