工业水处理 ›› 2012, Vol. 32 ›› Issue (2): 44-46. doi: 10.11894/1005-829x.2012.28(2).44

• 试验研究 • 上一篇    下一篇

循环冷却水系统的黏附速率预测模型的研究

高强, 李荣, 张凌峰, 董超   

  1. 天津理工大学自动化学院天津市复杂系统控制理论及应用重点实验室
  • 收稿日期:2011-10-20 出版日期:2012-02-20 发布日期:2012-02-27
  • 作者简介:高强(1968-),1999年毕业于天津大学,硕士,教授,硕士生导师,研究方向为故障诊断、控制理论与控制工程等.电话:022-60214105,E-mail:gaoanbei@163.com.
  • 基金资助:

    天津市科技创新专项资金项目(05FZZDGX00300);天津市教委滨海新区双百科技特派员科技专项(SB20080070)

Research on the prediction model of scaling rate in circulating cooling water systems

Gao Qiang, Li Rong, Zhang Lingfeng, Dong Chao   

  1. Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems,College of Automation, Tianjin University of Science & Technology,Tianjin 300384,China
  • Received:2011-10-20 Online:2012-02-20 Published:2012-02-27

摘要:

结垢是循环冷却水系统中常见的水质故障,人们常用水质判断指数来判断循环冷却水水质的结垢趋势。通过对某石化公司循环冷却水系统生产运行数据的分析,选取了对黏附速率影响较大的水质参数,借助神经网络的非线性映射、泛化及容错能力,基于BP神经网络建立了黏附速率的预测模型。利用该模型对循环冷却水系统一定周期黏附速率的预测结果较好,说明该方法可行,具有很好的应用前景。

关键词: 循环冷却水, 黏附速率, 预测模型, 神经网络

Abstract:

Scaling is a common water quality fault in circulating cooling water systems.Water quality index is usually used for judging the scaling tendency of circulating cooling water quality.Based on the analysis on the production operation data of the circulating cooling water system in a petrochemical company,the water quality parameters,which have greater effect on scaling rate,have been selected for establishing the prediction model of scaling rate.It is based on BP neural network that has non-linear mapping,generalization,and fault tolerance capacities.This prediction model for predicting the scaling rate of the circulating cooling water system in a certain period has achieved good results.It shows that this method is feasible,having very good application prospect.

Key words: circulating cooling water, scaling rate, prediction model, neural network

中图分类号: