1 |
Wang Yuxian , Cao Hongbin , Chen Chunmao , et al. Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping[J]. Chemical Engineering Journal, 2019, 355, 118- 129.
doi: 10.1016/j.cej.2018.08.134
|
2 |
Nawrocki J , Kasprzyk-Hordern B . The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99 (1/2): 27- 42.
URL
|
3 |
柯武, 梁大山, 史雅楠. 水溶液中均相催化臭氧氧化和多相催化臭氧氧化的比较[J]. 科技展望, 2015, 25 (7): 58.
doi: 10.3969/j.issn.1672-8289.2015.07.051
|
4 |
Faria P , Orfao J , Pereira M . Activated carbon catalytic ozonation of oxamic and oxalic acids[J]. Applied Catalysis B: Environmental, 2008, 79 (3): 237- 243.
doi: 10.1016/j.apcatb.2007.10.021
|
5 |
Wang Yuxian , Chen Lulu , Chen Chunmao , et al. Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation[J]. Applied Catalysis B: Environmental, 2019, 254, 283- 291.
doi: 10.1016/j.apcatb.2019.05.008
|
6 |
Faria P , Monteiro D , Órfão J , et al. Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds[J]. Chemosphere, 2009, 74 (6): 818- 824.
doi: 10.1016/j.chemosphere.2008.10.016
|
7 |
Krisbiantoro P A , Togawa T , Mahardiani L , et al. The role of cobalt oxide or magnesium oxide in ozonation of ammonia nitrogen in water[J]. Applied Catalysis A: General, 2020, 596, 117515.
doi: 10.1016/j.apcata.2020.117515
|
8 |
Xu Bingbing , Qi Fei , Zhang Jizhou , et al. Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: Catalyst surface properties characterization and reaction mechanism[J]. Chemical Engineering Journal, 2016, 284, 942- 952.
doi: 10.1016/j.cej.2015.09.032
|
9 |
Wang Yuxian , Ren Nuo , Xi Jiaxin , et al. Mechanistic investigations of the pyridinic N-Co structures in Co embedded N-doped carbon nanotubes for catalytic ozonation[J]. ACS ES & T Engineering, 2021, 1 (1): 32- 45.
URL
|
10 |
Yang Li , Hu Chun , Nie Yulong , et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environmental Science & Technology, 2009, 43 (7): 2525- 2529.
URL
|
11 |
Sui Minghao , Xing Sichu , Sheng Li , et al. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst[J]. Journal of Hazardous Materials, 2012, 227, 227- 236.
URL
|
12 |
Hu Huawen , Xin J H , Hu Hong , et al. Metal-free graphene-based catalyst-Insight into the catalytic activity: A short review[J]. Applied Catalysis A: General, 2015, 492, 1- 9.
doi: 10.1016/j.apcata.2014.11.041
|
13 |
Liu Xien , Dai Liming . Carbon-based metal-free catalysts[J]. Nature Reviews Materials, 2016, 1 (11): 1- 12.
URL
|
14 |
Ren Yueming , Dong Qing , Feng Jing , et al. Magnetic porous ferro-spinel NiFe2O4: A novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water[J]. Journal of Colloid and Interface Science, 2012, 382 (1): 90- 96.
doi: 10.1016/j.jcis.2012.05.053
|
15 |
Wang Yuxian , Xie Yongbing , Sun Hongqi , et al. Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds[J]. Catalysis Science & Technology, 2016, 6 (9): 2918- 2929.
URL
|
16 |
Xing Shengtao , Lu Xiaoyang , Ren Limei , et al. Characterization and reactivity of Mn-Ce-O composites for catalytic ozonation of antipy-rine[J]. RSC Advances, 2015, 5 (74): 60279- 60285.
doi: 10.1039/C5RA11360A
|
17 |
Zhang Fengzhen , Wei Chaohai , Wu Kaiyi , et al. Mechanistic evaluation of ferrite AFe2O4(A=Co, Ni, Cu, and Zn)catalytic performance in oxalic acid ozonation[J]. Applied Catalysis A: General, 2017, 547, 60- 68.
doi: 10.1016/j.apcata.2017.08.025
|
18 |
Li Caihua , Jiang Feng , Sun Dezhi , et al. Catalytic ozonation for advanced treatment of incineration leachate using(MnO2-Co3O4)/ACs a catalyst[J]. Chemical Engineering Journal, 2017, 325, 624- 631.
doi: 10.1016/j.cej.2017.05.124
|
19 |
Yin Renli , Guo Wanqian , Zhou Xianjiao , et al. Enhanced sulfame-thoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism[J]. Rsc Advances, 2016, 6 (23): 19265- 19270.
doi: 10.1039/C5RA25994K
|
20 |
Zhao Hui , Dong Yuming , Wang Guangli , et al. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances[J]. Chemical Engineering Journal, 2013, 219, 295- 302.
doi: 10.1016/j.cej.2013.01.019
|
21 |
Xu Yin , Lin Ziyan , Zheng Yanyan , et al. Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor[J]. Science of The Total Environment, 2019, 651, 2585- 2596.
doi: 10.1016/j.scitotenv.2018.10.005
|
22 |
Liotta L , Gruttadauria M , Di Carlo G , et al. Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity[J]. Journal of Hazardous Materials, 2009, 162 (2/3): 588- 606.
URL
|
23 |
Wang Jianlong , Bai Zhiyong . Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312, 79- 98.
doi: 10.1016/j.cej.2016.11.118
|
24 |
Wang Jianlong , Chen Hai . Catalytic ozonation for water and waste-water treatment: Recent advances and perspective[J]. Science of the Total Environment, 2020, 704, 135249.
doi: 10.1016/j.scitotenv.2019.135249
|
25 |
Niu Lijun , Wei Ting , Li Qiangang , et al. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review[J]. Journal of Environmental Sciences, 2020, 96, 109- 116.
doi: 10.1016/j.jes.2020.04.033
|
26 |
Legube B , Leitner N K V . Catalytic ozonation: A promising advanced oxidation technology for water treatment[J]. Catalysis Today, 1999, 53 (1): 61- 72.
doi: 10.1016/S0920-5861(99)00103-0
|
27 |
Hoigné J , Bader H . Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ: Dissociating organic compounds[J]. Water Research, 1983, 17 (2): 185- 194.
doi: 10.1016/0043-1354(83)90099-4
|
28 |
Hoigné J , Bader H . Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ: Non-dissociating organic compounds[J]. Water Research, 1983, 17 (2): 173- 183.
doi: 10.1016/0043-1354(83)90098-2
|
29 |
Buxton G V , Greenstock C L , Helman W P , et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(·OH/·O-)in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17 (2): 513- 886.
doi: 10.1063/1.555805
|
30 |
Hoigné J. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes[M]//J. Hrubec. The Handbook of Environmental Chemistry, Quality and Treatment of Drinking Water Ⅱ. Berlin: Springer, 1998: 83-141.
|
31 |
Criegee R . Mechanism of ozonolysis[J]. Angewandte chemie international edition in English, 1975, 14 (11): 745- 752.
doi: 10.1002/anie.197507451
|
32 |
Wang Yuxian , Duan Xiaoguang , Xie Yongbing , et al. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways[J]. ACS Catalysis, 2020, 10, 13383- 13414.
doi: 10.1021/acscatal.0c04232
|
33 |
Merenyi G , Lind J , Naumov S , et al. The reaction of ozone with the hydroxide ion: Mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4· in superoxide dismutation[J]. Chemistry-A European Journal, 2010, 16 (4): 1372- 1377.
doi: 10.1002/chem.200802539
|
34 |
Kasprzyk-Hordern B , Ziółek M , Nawrocki J . Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46 (4): 639- 669.
doi: 10.1016/S0926-3373(03)00326-6
|
35 |
Royer S , Duprez D , Can F , et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality[J]. Chemical Reviews, 2014, 114 (20): 10292- 10368.
doi: 10.1021/cr500032a
|
36 |
Orge C A , Órfão J , Pereira M , et al. Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds[J]. Applied Catalysis B: Environmental, 2013, 140, 426- 432.
URL
|
37 |
Wang Yuxian , Chen Lulu , Cao Hongbin , et al. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination[J]. Applied Catalysis B: Environmental, 2019, 245, 546- 554.
doi: 10.1016/j.apcatb.2019.01.025
|
38 |
Tofield B C , Scott W R . Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction[J]. Journal of Solid State Chemistry, 1974, 10 (3): 183- 194.
doi: 10.1016/0022-4596(74)90025-5
|
39 |
Mefford J T , Hardin W G , Dai S , et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes[J]. Nature Materials, 2014, 13 (7): 726- 732.
doi: 10.1038/nmat4000
|
40 |
Merino N A , Barbero B P , Eloy P , et al. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS[J]. Applied Surface Science, 2006, 253 (3): 1489- 1493.
doi: 10.1016/j.apsusc.2006.02.035
|
41 |
Sinquin G , Petit C , Hindermann J , et al. Study of the formation of LaMO3(M=Co, Mn)perovskites by propionates precursors: Application to the catalytic destruction of chlorinated VOCs[J]. Catalysis Today, 2001, 70 (1/2/3): 183- 196.
URL
|
42 |
Zhang Yuting , Xia Yijing , Li Qingwei , et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism[J]. Separation and Purification Technology, 2018, 197, 261- 270.
doi: 10.1016/j.seppur.2018.01.019
|
43 |
Carbajo M , Rivas F J , Beltrán F J , et al. Effects of different catalysts on the ozonation of pyruvic acid in water[J]. Ozone: Science & Engineering, 2006, 28 (4): 229- 235.
URL
|
44 |
Rivas F , Carbajo M , Beltrán F , et al. Perovskite catalytic ozonation of pyruvic acid in water: Operating conditions influence and kinetics[J]. Applied Catalysis B: Environmental, 2006, 62 (1/2): 93- 103.
URL
|
45 |
Carbajo M , Beltrán F , Medina F , et al. Catalytic ozonation of phenolic compounds: The case of gallic acid[J]. Applied Catalysis B: Environmental, 2006, 67 (3/4): 177- 186.
URL
|
46 |
Carbajo M , Beltrán F , Gimeno O , et al. Ozonation of phenolic waste-waters in the presence of a perovskite type catalyst[J]. Applied Catalysis B: Environmental, 2007, 74 (3/4): 203- 210.
URL
|
47 |
Beltrán F J , Pocostales P , Alvarez P , et al. Perovskite catalytic ozonation of some pharmaceutical compounds in water[J]. Ozone: Science & Engineering, 2010, 32 (4): 230- 237.
URL
|
48 |
Beltrán F J , Pocostales P , Alvarez P M , et al. Catalysts to improve the abatement of sulfamethoxazole and the resulting organic carbon in water during ozonation[J]. Applied Catalysis B: Environmental, 2009, 92 (3/4): 262- 270.
URL
|
49 |
Wang Yin , Wang Yun , Yu Lan , et al. Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: Insight into the catalytic mechanism[J]. Chemical Engineering Journal, 2019, 368, 115- 128.
doi: 10.1016/j.cej.2019.02.174
|
50 |
Nawrocki J . Catalytic ozonation in water: Controversies and questions. Discussion pape[J]. Applied Catalysis B: Environmental, 2013, 142, 465- 471.
URL
|
51 |
Afzal S , Quan Xie , Zhang Jianlin . High surface area mesoporous nanocast LaMO3(M=Mn, Fe)perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B: Environmental, 2017, 206, 692- 703.
doi: 10.1016/j.apcatb.2017.01.072
|
52 |
Bing Jishuai , Hu Chun , Nie Yulun , et al. Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen[J]. Environmental Science & Technology, 2015, 49 (3): 1690- 1697.
URL
|
53 |
Wang Yuxian , Cao Hongbin , Chen Lulu , et al. Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination[J]. Applied Catalysis B: Environmental, 2018, 229, 71- 80.
doi: 10.1016/j.apcatb.2018.02.010
|
54 |
Wei Dacheng , Liu Yunqi , Wang Yu , et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9 (5): 1752- 1758.
doi: 10.1021/nl803279t
|
55 |
Gong Shuyan , Xie Zheng , Li Weiman , et al. Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition[J]. Applied Catalysis B: Environmental, 2019, 241, 578- 587.
doi: 10.1016/j.apcatb.2018.09.041
|
56 |
Beltrán F J , Rivas F J , Montero-De-Espinosa R . Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor[J]. Applied Catalysis B: Environmental, 2002, 39 (3): 221- 231.
doi: 10.1016/S0926-3373(02)00102-9
|
57 |
Rosal R , Rodríguez A , Gonzalo M , et al. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide[J]. Applied Catalysis B: Environmental, 2008, 84 (1/2): 48- 57.
URL
|
58 |
Mvula E , Von Sonntag C . Ozonolysis of phenols in aqueous solution[J]. Organic & Biomolecular Chemistry, 2003, 1 (10): 1749- 1756.
URL
|
59 |
Wu J J , Muruganandham M , Chang L T , et al. Catalytic ozonation of oxalic acid using SrTiO3 catalyst[J]. Ozone: Science & Engineering, 2011, 33 (1): 74- 79.
|
60 |
Zhang Yuting , Xia Yijing , Li Qingwei , et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism[J]. Separation and Purification Technology, 2018, 197, 261- 270.
doi: 10.1016/j.seppur.2018.01.019
|
61 |
Wang Zimeng , Ma Hui , Zhang Chen , et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: Performance and mechanism[J]. Chemical Engineering Journal, 2018, 354, 42- 52.
doi: 10.1016/j.cej.2018.07.177
|
62 |
Feng Yong , Wu Deli , Deng Yu , et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms[J]. Environmental Science & Technology, 2016, 50 (6): 3119- 3127.
URL
|
63 |
Reddy D H K , Yun Y S . Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?[J]. Coordination Chemistry Reviews, 2016, 315, 90- 111.
doi: 10.1016/j.ccr.2016.01.012
|
64 |
Chen Jun , Wen Weijie , Kong Linjun , et al. Magnetically separable and durable MnFe2O4 for efficient catalytic ozonation of organic pollutants[J]. Industrial & Engineering Chemistry Research, 2014, 53 (15): 6297- 6306.
URL
|
65 |
Zhang Heng , Ji Fangzhou , Zhang Yunhong , et al. Catalytic ozonation of N, N-dimethylacetamide(DMAC) in aqueous solution using nanoscaled magnetic CuFe2O4[J]. Separation and Purification Technology, 2018, 193, 368- 377.
doi: 10.1016/j.seppur.2017.10.028
|
66 |
Liu Dan , Wang Chunrong , Song Yifan , et al. Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe2O4/Sepiolite catalyst: Efficiency and mechanism[J]. Chemosphere, 2019, 227, 647- 656.
doi: 10.1016/j.chemosphere.2019.04.040
|
67 |
Lu Jiang , Wei Xiaodan , Chang Yu , et al. Role of Mg in mesoporous MgFe2O4 for efficient catalytic ozonation of Acid Orange Ⅱ[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (4): 985- 993.
URL
|
68 |
Dai Qizhou , Zhang Zhuo , Zhan Tingting , et al. Catalytic ozonation for the degradation of 5-sulfosalicylic acid with spinel-type ZnAl2O4 prepared by hydrothermal, sol-gel, and coprecipitation methods: A Comparison Study[J]. ACS Omega, 2018, 3 (6): 6506- 6512.
doi: 10.1021/acsomega.8b00263
|
69 |
Qi Fei , Xu Bingbing , Chu Wei . Heterogeneous catalytic ozonation of phenacetin in water using magnetic spinel ferrite as catalyst: Comparison of surface property and efficiency[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396, 164- 173.
doi: 10.1016/j.molcata.2014.10.001
|
70 |
Qi Fei , Chu Wei , Xu Bingbing . Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262, 552- 562.
doi: 10.1016/j.cej.2014.09.068
|
71 |
Qi Fei , Chu Wei , Xu Bingbing . Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor: Surface properties, intermediates and reaction mechanisms[J]. Chemical Engineering Journal, 2016, 284, 28- 36.
doi: 10.1016/j.cej.2015.07.095
|
72 |
Gervasini A , Vezzoli G , Ragaini V . VOC removal by synergic effect of combustion catalyst and ozone[J]. Catalysis Today, 1996, 29 (1/2/3/4): 449- 455.
URL
|
73 |
Mehandjiev D , Naydenov A , Ivanov G . Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts[J]. Applied Catalysis A: General, 2001, 206 (1): 13- 18.
doi: 10.1016/S0926-860X(00)00570-6
|
74 |
Zhao Wenkai , Zhong Qin , Ding Jie , et al. Enhanced catalytic ozonation over reduced spinel CoMn2O4 for NOx removal: Active site and mechanism analysis[J]. RSC advances, 2016, 6 (116): 115213- 115221.
doi: 10.1039/C6RA21544K
|
75 |
Chen Hai , Wang Jianlong . Catalytic ozonation for degradation of sulfamethazine using NiCo2O4 as catalyst[J]. Chemosphere, 2021, 268, 128840.
doi: 10.1016/j.chemosphere.2020.128840
|
76 |
Xu Yin , Lin Ziyan , Zheng Yanyan , et al. Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor[J]. Science of the Total Environment, 2019, 651, 2585- 2596.
doi: 10.1016/j.scitotenv.2018.10.005
|
77 |
Mohapatra M , Anand S . Synthesis and applications of nano-structured iron oxides/hydroxides-a review[J]. International Journal of Engineering, Science and Technology, 2010, 2 (8): 127- 146.
URL
|
78 |
Chen Chunmao , Yan Xin , Yoza B A , et al. Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water[J]. Science of the Total Environment, 2018, 612, 1424- 1432.
doi: 10.1016/j.scitotenv.2017.09.019
|
79 |
Park J S , Choi H , Ahn K H , et al. Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite[J]. Ozone: Science & Engineering, 2004, 26 (2): 141- 151.
URL
|
80 |
Qi Fei , Xu Bingbing , Chen Zhonglin , et al. Ozonation catalyzed by the raw bauxite for the degradation of 2, 4, 6-trichloroanisole in drinking water[J]. Journal of Hazardous Materials, 2009, 168 (1): 246- 252.
doi: 10.1016/j.jhazmat.2009.02.037
|
81 |
Zhao Lei , Ma Jun , Sun Zhizhong , et al. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb[J]. Applied Catalysis B: Environmental, 2009, 89 (3/4): 326- 334.
URL
|
82 |
Yuan Lei , Shen Jimin , Chen Zhonglin , et al. Pumice-catalyzed ozonation degradation of p-chloronitrobenzene in aqueous solution[J]. Applied Catalysis B: Environmental, 2012, 117, 414- 419.
URL
|
83 |
Ikhlaq A , Brown D R , Kasprzyk-Hordern B . Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites[J]. Applied Catalysis B: Environmental, 2014, 154, 110- 122.
URL
|
84 |
Valdés H , Tardón R F , Zaror C A . Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters[J]. Chemical Engineering Journal, 2012, 211, 388- 395.
URL
|
85 |
Valdés H , Farfán V J , Manoli J A , et al. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand[J]. Journal of Hazardous Materials, 2009, 165 (1/2/3): 915- 922.
URL
|
86 |
Park J S , Choi H , Cho J . Kinetic decomposition of ozone and para-chlorobenzoic acid(pCBA) during catalytic ozonation[J]. Water Research, 2004, 38 (9): 2285- 2292.
doi: 10.1016/j.watres.2004.01.040
|
87 |
Zhang Tao , Ma Jun . Catalytic ozonation of trace nitrobenzene in water with synthetic goethite[J]. Journal of Molecular Catalysis A: Chemical, 2008, 279 (1): 82- 89.
doi: 10.1016/j.molcata.2007.09.030
|
88 |
Bai Zhiyong , Wang Jianlong , Yang Qi . Catalytic ozonation of dimethyl phthalate by Ce-substituted goethite[J]. International Journal of Environmental Science and Technology, 2017, 14 (11): 2379- 2388.
doi: 10.1007/s13762-017-1319-x
|
89 |
Bai Zhiyong , Yang Qi , Wang Jianlong . Catalytic ozonation of sulfa-methazine antibiotics using Ce0.1Fe0.9OOH: Catalyst preparation and performance[J]. Chemosphere, 2016, 161, 174- 180.
doi: 10.1016/j.chemosphere.2016.07.012
|
90 |
Bai Zhiyong , Yang Qi , Wang Jianlong . Catalytic ozonation of sulfa-methazine using Ce0.1Fe0.9OOH as catalyst: Mineralization and catalytic mechanisms[J]. Chemical Engineering Journal, 2016, 300, 169- 176.
doi: 10.1016/j.cej.2016.04.129
|
91 |
Yan Pengwei , Shen Jimin , Zhou Yanchi , et al. Interface mechanism of catalytic ozonation in an α-Fe0.9Mn0.1OOH aqueous suspension for the removal of iohexol[J]. Applied Catalysis B: Environmental, 2020, 277, 119055.
doi: 10.1016/j.apcatb.2020.119055
|
92 |
Yan Pengwei , Chen Zhonglin , Wang Shuyu , et al. Catalytic ozonation of iohexol with α-Fe0.9Mn0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation[J]. Journal of Hazardous Materials, 2020, 402, 123574.
URL
|
93 |
Xu Zhenzhen , Xie Meiling , Ben Yue , et al. Efficiency and mechanism of atenolol decomposition in Co-FeOOH catalytic ozonation[J]. Journal of Hazardous Materials, 2019, 365, 146- 154.
doi: 10.1016/j.jhazmat.2018.11.006
|
94 |
Qi Fei , Xu Bingbing , Zhao Lun , et al. Comparison of the efficiency and mechanism of catalytic ozonation of 2, 4, 6-trichloroanisole by iron and manganese modified bauxite[J]. Applied Catalysis B: Environmental, 2012, 121, 171- 181.
URL
|
95 |
Sun Zhizhong , Ma Jun , Wang Libo , et al. Degradation of nitroben-zene in aqueous solution by ozone-ceramic honeycomb[J]. Journal of Environmental Sciences, 2005, 17 (5): 716- 721.
URL
|
96 |
Zhao Lei , Sun Zhizhong , Ma Jun , et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental science & technology, 2009, 43 (6): 2047- 2053.
URL
|
97 |
Zhao Lei , Sun Zhizhong , Ma Jun . Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43 (11): 4157- 4163.
URL
|
98 |
Zhao Lei , Ma Jun , Sun Zhizhong , et al. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation[J]. Environmental Science & Technology, 2008, 42 (11): 4002- 4007.
URL
|
99 |
Zhao Lei , Ma Jun , Sun Zhizhong , et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycombsupported manganese[J]. Applied Catalysis B: Environmental, 2008, 83 (3/4): 256- 264.
URL
|
100 |
Gao Guoying , Shen Jimin , Chu Wei , et al. Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice[J]. Separation and Purification Technology, 2017, 173, 55- 62.
doi: 10.1016/j.seppur.2016.09.016
|
101 |
Liu Xiaoyu , Zhou Zuoming , Jing Guohua , et al. Catalytic ozonation of Acid Red B in aqueous solution over a Fe-Cu-O catalyst[J]. Separation and Purification Technology, 2013, 115, 129- 135.
doi: 10.1016/j.seppur.2013.05.005
|
102 |
Sun Qiangqiang , Li Laisheng , Yan Huihua , et al. Influence of the surface hydroxyl groups of MnOx/SBA-15 on heterogeneous catalytic ozonation of oxalic acid[J]. Chemical Engineering Journal, 2014, 242, 348- 356.
doi: 10.1016/j.cej.2013.12.097
|
103 |
Ma Zichuan , Zhu Lin , Lu Xiaoyang , et al. Catalytic ozonation of pnitrophenol over mesoporous Mn-Co-Fe oxide[J]. Separation and Purification Technology, 2014, 133, 357- 364.
doi: 10.1016/j.seppur.2014.07.011
|