1 |
WANG Juan, LI Lanlan, LI Fangyi,et al. Regional footprints and interregional interactions of chemical oxygen demand discharges in China[J]. Resources,Conservation and Recycling, 2018, 132:386-397. doi: 10.1016/j.resconrec.2017.08.008
|
2 |
吴芳磊,贺航运,梁庸,等. 造纸废水处理强化生化系统COD去除的实例[J]. 工业水处理,2022,42(3):186-190.
|
|
WU Fanglei, HE Hangyun, LIANG Yong,et al. Examples of improving COD removal by strengthening biochemical system in papermaking wastewater treatment[J]. Industrial Water Treatment,2022,42(3):186-190.
|
3 |
杜杨柳,贾少武,兰蕾,等. Fe3O4/MnO2纳米复合材料光催化深度处理造纸废水[J]. 工业水处理,2020,40(3):89-93.
|
|
DU Yangliu, JIA Shaowu, LAN Lei,et al. Advanced treatment of paper-making wastewater by photocatalysis with Fe3O4/MnO2 nanocomposites[J]. Industrial Water Treatment,2020,40(3):89-93.
|
4 |
LIU Hongbin, ZHANG Yuchen, ZHANG Hao. Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine[J]. Process Biochemistry, 2020, 97:72-79. doi: 10.1016/j.procbio.2020.06.020
|
5 |
MAN Yi, HU Yusha, REN Jingzheng. Forecasting COD load in municipal sewage based on ARMA and VAR algorithms[J]. Resources,Conservation and Recycling, 2019, 144:56-64. doi: 10.1016/j.resconrec.2019.01.030
|
6 |
CHEN Yangwu, LAN Shuhuan, WANG Longhui,et al. A review:Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017, 174:173-182. doi: 10.1016/j.chemosphere.2017.01.129
|
7 |
OTHMAN F, ALAAELDIN M E, SEYAM M,et al. Efficient river water quality index prediction considering minimal number of inputs variables[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1):751-763. doi: 10.1080/19942060.2020.1760942
|
8 |
ABBA S I, ELKIRAN G. Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application[J]. Procedia Computer Science, 2017, 120:156-163. doi: 10.1016/j.procs.2017.11.223
|
9 |
MOON J, LEE J, LEE S,et al. Urban river dissolved oxygen prediction model using machine learning[J]. Water, 2022, 14(12):1899. doi: 10.3390/w14121899
|
10 |
张杰. IC反应器处理猪粪废水条件下污泥颗粒化研究[D]. 郑州:河南农业大学,2004.
|
|
ZHANG Jie. Study on the anaerobic sludge granulation on treating piggery wastewater in IC reactor[D]. Zhengzhou:Henan Agricultural University,2004.
|
11 |
ZARE A H. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters[J]. Journal of Environmental Health Science & Engineering, 2014, 12(1):40. doi: 10.1186/2052-336x-12-40
|
12 |
|
|
JIA Suyun, CHEN Min, QIU Ling. Research on rapid forecast method of COD Cr in waster water from paper making[J]. Shanxi Chemical Industry, 2003, 23(2):25-27. doi: 10.3969/j.issn.1004-7050.2003.02.009
|
13 |
|
|
YANG Haijing, LI Huayu, WANG Wenling. Rapid prediction of COD in paper-process reconstituted tobacco wastewater[J]. Environmental Protection of Chemical Industry, 2019, 39(3):337-341. doi: 10.3969/j.issn.1006-1878.2019.03.017
|
14 |
ZHANG Hongling, MA Guofeng, SUN Lina,et al. Effect of alkaline material on phytotoxicity and bioavailability of Cu,Cd,Pb and Zn in stabilized sewage sludge[J]. Environmental Technology, 2018, 39(17):2168-2177. doi: 10.1080/09593330.2017.1351496
|
15 |
REDDY T, GUPTA A. Mathematical model of biodegradation process of sewage due to addition of chlorides[J]. Desalination and Water Treatment, 2016, 57:11729-11735. doi: 10.1080/19443994.2015.1044916
|
16 |
崔心惠,李文萱,张祝威. 基于PSO优化LSSVM的出水BOD5预测建模[J]. 盐城工学院学报(自然科学版),2021,34(4):11-16.
|
|
CUI Xinhui, LI Wenxuan, ZHANG Zhuwei. Predictive modeling of effluent BOD5 based on PSO optimized LSSVM[J]. Journal of Yancheng Institute of Technology(Natural Science),2021,34(4):11-16.
|
17 |
|
|
FENG Sheng, LIU Mingyuan, FENG Xu. Intelligent treatment of industrial water quality based on NARX neural network[J]. Industrial Water Treatment, 2018, 38(3):69-72. doi: 10.11894/1005-829x.2018.38(3).069
|
18 |
董利鹏,王晓玲,谢添,等. 寒冷地区改良A2/O工艺污水处理厂的自动控制[J]. 中国给水排水,2014,30(12):119-123.
|
|
DONG Lipeng, WANG Xiaoling, XIE Tian,et al. Automatic control of improved A2/O process in wastewater treatment plant in cold regions[J]. China Water & Wastewater,2014,30(12):119-123.
|
19 |
SUI Qianwen, JIANG Chao, YU Dawei,et al. Performance of a sequencing-batch membrane bioreactor(SMBR) with an automatic control strategy treating high-strength swine wastewater[J]. Journal of Hazardous Materials, 2018, 342:210-219. doi: 10.1016/j.jhazmat.2017.05.010
|
20 |
|
|
YANG Lu, LIU Huikang. Sludge volume index soft sensing based on wavelet neural network for sewage treatment[J]. Industrial Water Treatment, 2017, 37(8):33-35. doi: 10.11894/1005-829x.2017.37(8).033
|
21 |
|
|
WANG Yong, LU Wei, ZUO Chuhan,et al. Research on water quality BOD prediction based on improved random forest model[J]. Chinese Journal of Sensors and Actuators, 2021, 34(11):1482-1488. doi: 10.3969/j.issn.1004-1699.2021.11.010
|
22 |
刘良才,李炳堂,许国齐,等. 造纸法烟草薄片废水碳源回收研究[J]. 纸和造纸,2019,38(5):41-46.
|
|
LIU Liangcai, LI Bingtang, XU Guoqi,et al. Research on carbon source recovery of wastewater from paper-making reconstituted tobacco sheet[J]. Paper and Paper Making,2019,38(5):41-46.
|
23 |
|
|
ZHAO Yong, LI You, WANG Yonggang,et al. Analysis on relativity between CODcr and conductance of urban sewage[J]. Chongqing Environmental Science, 2003(2):36-38. doi: 10.3969/j.issn.1674-2842.2003.02.012
|
24 |
ZHENG Xiaoyuan, JIANG Zhengwei, YING Zhi,et al. Role of feedstock properties and hydrothermal carbonization conditions on fuel properties of sewage sludge-derived hydrochar using multiple linear regression technique[J]. Fuel, 2020, 271:117609. doi: 10.1016/j.fuel.2020.117609
|
25 |
|
|
|
26 |
WANG Rui, YU Yadan, CHEN Yangwu,et al. Model construction and application for effluent prediction in wastewater treatment plant:Data processing method optimization and process parameters integration[J]. Journal of Environmental Management, 2022, 302:114020. doi: 10.1016/j.jenvman.2021.114020
|