1 |
|
2 |
NORÐI K Á, THAMDRUP B. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment[J]. Geochimica et Cosmochimica Acta, 2014, 132:141-150. doi: 10.1016/j.gca.2014.01.032
|
3 |
DEUTZMANN J S, STIEF P, BRANDES J,et al. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51):18273-18278. doi: 10.1073/pnas.1411617111
|
4 |
SHEN Lidong, WU Hongsheng, LIU Xu,et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123:162-172. doi: 10.1016/j.watres.2017.06.075
|
5 |
DING Jing, FU Liang, DING Zhaowei,et al. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis[J]. Applied Microbiology and Biotechnology, 2016, 100(14):6481-6490. doi: 10.1007/s00253-016-7475-y
|
6 |
|
|
XUE Yiting, AN Facai, SHI Tianjing,et al. Enrichment of denitrifying anaerobic methane oxidation microbial and its influence factors analysis[J]. Chinese Journal of Environmental Engineering, 2021, 15(2):599-608. doi: 10.12030/j.cjee.202005194
|
7 |
DEUTZMANN J S, SCHINK B. Anaerobic oxidation of methane in sediments of Lake Constance,an oligotrophic freshwater lake[J]. Applied and Environmental Microbiology, 2011, 77(13):4429-4436. doi: 10.1128/aem.00340-11
|
8 |
RAGHOEBARSING A A,POL A, VAN DE PAS-SCHOONEN K T,et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086):918-921. doi: 10.1038/nature04617
|
9 |
ETTWIG K F, SHIMA S, VAN DE PAS-SCHOONEN K T,et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea [J]. Environmental Microbiology, 2008, 10(11):3164-3173. doi: 10.1111/j.1462-2920.2008.01724.x
|
10 |
ETTWIG K F, VAN ALEN T, VAN DE PAS-SCHOONEN K T,et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 Phylum[J]. Applied and Environmental Microbiology, 2009, 75(11):3656-3662. doi: 10.1128/aem.00067-09
|
11 |
HAROON M F, HU Shihu, SHI Ying,et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464):567-570. doi: 10.1038/nature12375
|
12 |
ETTWIG K F, BUTLER M K, LE PASLIER D,et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288):543-548. doi: 10.1038/nature08883
|
13 |
KOJIMA H, TSUTSUMI M, ISHIKAWA K,et al. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake,Lake Biwa[J]. Systematic and Applied Microbiology, 2012, 35(4):233-238. doi: 10.1016/j.syapm.2012.03.005
|
14 |
YANG Jian, JIANG Hongchen, WU Geng,et al. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes[J]. Frontiers of Earth Science, 2012, 6(4):383-391. doi: 10.1007/s11707-012-0336-9
|
15 |
WANG Shenghui, WU Qing, LEI Ting,et al. Enrichment of denitrifying methanotrophic bacteria from Taihu sediments by a membrane biofilm bioreactor at ambient temperature[J]. Environmental Science and Pollution Research, 2016, 23(6):5627-5634. doi: 10.1007/s11356-015-5509-0
|
16 |
SHEN Lidong, HUANG Qian, HE Zhanfei,et al. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils[J]. Applied Microbiology and Biotechnology, 2015, 99(1):349-357. doi: 10.1007/s00253-014-6031-x
|
17 |
SHEN Lidong, LIU Shuai, HE Zhanfei,et al. Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland[J]. Soil Biology and Biochemistry, 2015, 83:43-51. doi: 10.1016/j.soilbio.2015.01.010
|
18 |
ZHANG Manping, LUO Yi, LIN Li’an,et al. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary,China[J]. Applied Microbiology and Biotechnology, 2018, 102(5):2441-2454. doi: 10.1007/s00253-017-8718-2
|
19 |
SHEN Lidong, LIU Shuai, ZHU Qun,et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 2014, 67(2):341-349. doi: 10.1007/s00248-013-0330-0
|
20 |
HAN Ping, GU Jidong. A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches[J]. Applied Microbiology and Biotechnology, 2013, 97(23):10155-10162. doi: 10.1007/s00253-013-5260-8
|
21 |
ZHOU Leiliu, WANG Yu, LONG Xien,et al. High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile[J]. FEMS Microbiology Letters, 2014, 360(1):33-41. doi: 10.1111/1574-6968.12567
|
22 |
DING Jing, FU Liang, DING Zhaowei,et al. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing Archaea and bacteria in a paddy field[J]. Applied Microbiology and Biotechnology, 2016, 100(1):439-446. doi: 10.1007/s00253-015-6986-2
|
23 |
朱群,沈李东,胡宝兰,等. 西湖底泥中的反硝化型甲烷厌氧氧化菌的分子生物学检测[J]. 环境科学学报,2013,33(5):1321-1325.
|
|
Zhu Qun, Shen Lidong, Hu Baolan,et al. Molecular detection of denitrifying anaerobic methane oxidizing bacteria in the sediment of West Lake,Hangzhou[J]. Acta Scientiae Circumstantiae,2013,33(5):1321-1325.
|
24 |
LIU Yong, ZHANG Jingxu, ZHAO Lei,et al. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(5):2371-2381. doi: 10.1007/s00253-014-6141-5
|
25 |
汪冰寒. 汤逊湖与梁子湖沉积物中Candidatus Methylomirabilis oxyfera-like菌与anammox菌多样性与共存研究[D]. 武汉:华中农业大学,2018.
|
|
WANG Binghan. Diversity and coexistence of Candidatus methylomirabilis oxyfera-like and anammox in sediments of Tangxun Lake and liangzi lake[D]. Wuhan:Huazhong Agricultural University,2018.
|
26 |
WANG Yu, ZHU Guibing, HARHANGI H R,et al. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil[J]. FEMS Microbiology Letters, 2012, 336(2):79-88. doi: 10.1111/j.1574-6968.2012.02654.x
|
27 |
SHEN Lidong, HU Baolan, LIU Shuai,et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 2016, 100(16):7171-7180. doi: 10.1007/s00253-016-7627-0
|
28 |
XU S, LU W, MUSTAFA M F,et al. Presence of diverse nitrate-dependent anaerobic methane oxidizing Archaea in sewage sludge[J]. Journal of Applied Microbiology, 2020, 128(3):775-783. doi: 10.1111/jam.14502
|
29 |
SHEN L D, WU H S, GAO Z Q,et al. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 Phylum in agricultural soils[J]. Journal of Applied Microbiology, 2016, 120(6):1552-1560. doi: 10.1111/jam.13119
|
30 |
SHEN Lidong, WU Hongsheng, GAO Zhiqiu,et al. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 Phylum in different freshwater habitats[J]. Scientific Reports, 2016, 6(1):1-10. doi: 10.1038/srep25647
|
31 |
|
|
HUANG Pei. Existence and distribution characteristics of denitrifying anaerobic methane oxidizing bacteria in wetland of water-level-fluctuating zone in three gorges reservoir area[D]. Wuhan:Wuhan Textile University, 2015. doi: 10.1007/s00253-015-7083-2
|
32 |
张少华. 锡林河湿地反硝化型厌氧甲烷氧化菌群的空间分布特征[D]. 呼和浩特:内蒙古大学,2018.
|
|
ZHANG Shaohua. Spatial distribution characteristics of denitrifying anaerobic methane oxidizing bacteria in Xilinhe wetland[D]. Hohhot:Inner Mongolia University,2018.
|
33 |
XIE Fei, MA Anzhou, ZHOU Hanchang,et al. Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and Archaea leads to effective methane filtration in a Tibetan alpine wetland[J]. Environment International, 2020, 140:105764. doi: 10.1016/j.envint.2020.105764
|
34 |
李金业. 黄河三角洲滨海湿地土壤微生物多样性及反硝化型甲烷厌氧氧化过程研究[D]. 济南:齐鲁工业大学,2021.
|
|
LI Jinye. Study on soil microbial diversity and anaerobic oxidation process of denitrifying methane in coastal wetlands of the Yellow River Delta[D]. Jinan:Qilu University of Technology,2021.
|
35 |
刘洋,陈永娟,王晓燕,等. 人类活动对河流沉积物中反硝化厌氧甲烷氧化菌群落特征的影响[J]. 环境科学,2018,39(8):3677-3688.
|
|
LIU Yang, CHEN Yongjuan, WANG Xiaoyan,et al. Influences of anthropogenic activities on the community structure of N-DAMO bacteria in the north canal[J]. Environmental Science,2018,39(8):3677-3688.
|
36 |
王佳,宋永会,彭剑峰,等. 浑河底泥反硝化厌氧甲烷氧化菌群落结构时空特征[J]. 环境科学研究,2015,28(11):1670-1676.
|
|
Wang Jia, Song Yonghui, Peng Jianfeng,et al. Temporal and spatial characteristics of denitrifying anaerobic methane oxidizing bacteria community structure in Hunhe River sediment[J]. Research of Environmental Sciences,2015,28(11):1670-1676.
|
37 |
石国强. 浑河底泥中甲烷相关微生物群落结构时空分布及与环境关系研究[D]. 西安:西安建筑科技大学,2016.
|
|
SHI Guoqiang. Temporal and spatial distribution of methane-related microbial community structure in Hunhe River sediment and its relationship with environment[D]. Xi’an:Xi’an University of Architecture and Technology,2016.
|
38 |
张亚迪,宋永会,彭剑峰,等. 浑河底泥反硝化厌氧甲烷氧化菌群落多样性的时空分布特征及其与环境因子关系分析[J]. 环境科学,2018,39(8):3670-3676.
|
|
ZHANG Yadi, SONG Yonghui, PENG Jianfeng,et al. Analysis of the temporal and spatial distribution of the diversity of the denitrifying anaerobic methane-oxidizing bacterial community in the sediments of the Hunhe River and its relationship with environmental factors[J]. Environmental Science,2018,39(8):3670-3676.
|
39 |
YAN Pengze, LI Mingcong, WEI Guangshan,et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River Estuary,China[J]. PLoS One, 2015, 10(9):e0137996. doi: 10.1371/journal.pone.0137996
|
40 |
CHEN Jing, ZHOU Zhichao, GU Jidong. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 2014, 98(12):5685-5696. doi: 10.1007/s00253-014-5733-4
|
41 |
|
|
TANG Qian, XUE Xiaofeng, WANG Hui,et al. New knowledge of methanogens and methanotrophs in lake ecosystems[J]. Journal of Lake Sciences, 2018, 30(3):597-610. doi: 10.18307/2018.0302
|
42 |
ROLAND F A E, DARCHAMBEAU F, MORANA C,et al. Nitrous oxide and methane seasonal variability in the epilimnion of a large tropical meromictic lake(Lake Kivu,East-Africa)[J]. Aquatic Sciences, 2017, 79(2):209-218. doi: 10.1007/s00027-016-0491-2
|
43 |
郭丽芸. 江苏省湖泊反硝化菌群落结构及反硝化潜力研究[D]. 南京:南京大学,2013.
|
|
GUO Liyun. Study on community structure and denitrification potential of denitrifying bacteria in lakes of Jiangsu Province[D]. Nanjing:Nanjing University,2013.
|
44 |
王瑞飞,王亚利,杨清香. 淡水生态系统中反硝化型厌氧甲烷氧化微生物的研究进展[J]. 环境污染与防治,2018,40(12):1443-1448.
|
|
WANG Ruifei, WANG Yali, YANG Qingxiang. Research progress of denitrifying anaerobic methane oxidation microbes in freshwater ecosystems[J]. Environmental Pollution and Control,2018,40(12):1443-1448.
|
45 |
DAELMAN M R J, VAN VOORTHUIZEN E M, VAN DONGEN U G J M,et al. Methane emission during municipal wastewater treatment[J]. Water Research, 2012, 46(11):3657-3670. doi: 10.1016/j.watres.2012.04.024
|
46 |
MALYAN S K, BHATIA A, KUMAR A,et al. Methane production,oxidation and mitigation:A mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment, 2016, 572:874-896. doi: 10.1016/j.scitotenv.2016.07.182
|
47 |
SHI Lingdong, GUO Ting, LV Panlong,et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils[J]. Nature Geoscience, 2020, 13(12):799-805. doi: 10.1038/s41561-020-00659-z
|
48 |
王晓锋,袁兴中,陈槐,等. 河流CO2与CH4排放研究进展[J]. 环境科学,2017,38(12):5352-5366.
|
|
WANG Xiaofeng, YUAN Xingzhong, CHEN Huai,et al. Review of CO2 and CH4 emissions from rivers[J]. Environmental Science,2017,38(12):5352-5366.
|
49 |
ZHANG Xiaowei, LIU Yang, GU Jidong. A global analysis on the distribution pattern of the bacteria coupling simultaneous methane oxidation to nitrite reduction[J]. International Biodeterioration & Biodegradation, 2018, 129:123-132. doi: 10.1016/j.ibiod.2018.01.014
|
50 |
DING Jing, DING Zhaowei, FU Liang,et al. New primers for detecting and quantifying denitrifying anaerobic methane oxidation Archaea in different ecological niches[J]. Applied Microbiology and Biotechnology, 2015, 99(22):9805-9812. doi: 10.1007/s00253-015-6893-6
|
51 |
CHEN Feiyang, ZHENG Yanling, HOU Lijun,et al. Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat[J]. Marine Pollution Bulletin, 2020, 150:110681. doi: 10.1016/j.marpolbul.2019.110681
|
52 |
VAKSMAA A, JETTEN M S M, ETTWIG K F,et al. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph Candidatus ‘ Methanoperedens nitroreducens’[J]. Applied Microbiology and Biotechnology, 2017, 101(4):1631-1641. doi: 10.1007/s00253-016-8065-8
|
53 |
CALDWELL S L, LAIDLER J R, BREWER E A,et al. Anaerobic oxidation of methane:Mechanisms,bioenergetics,and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18):6791-6799. doi: 10.1021/es800120b
|
54 |
PERNTHALER A, PERNTHALER J, AMANN R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria[J]. Applied and Environmental Microbiology, 2002, 68(6):3094-3101. doi: 10.1128/aem.68.6.3094-3101.2002
|
55 |
|
|
Lu Lu. Catalyzed reporter deposition-fluorescence in situ hybridization(CARD-FISH)and its application in microbial ecology study[J]. Journal of Microbiology, 2017, 37(6):87-97. doi: 10.3969/j.issn.1005-7021.2017.06.014
|
56 |
WANG Shenghui, LIU Yanjun, LIU Guofu,et al. A new primer to amplify pmoA gene from NC10 bacteria in the sediments of Dongchang Lake and Dongping Lake[J]. Current Microbiology, 2017, 74(8):908-914. doi: 10.1007/s00284-017-1260-8
|
57 |
XU Sai, CAI Chen, GUO Jianhua,et al. Different clusters of Candidatus ‘ Methanoperedens nitroreducens’-like Archaea as revealed by high-throughput sequencing with new primers[J]. Scientific Reports, 2018, 8(1):1-8. doi: 10.1038/s41598-018-24974-z
|
58 |
SHEN Lidong, TIAN Maohui, CHENG Haixiang,et al. Different responses of nitrite- and nitrate-dependent Anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir[J]. Environmental Pollution, 2020, 263:114623. doi: 10.1016/j.envpol.2020.114623
|
59 |
DING Jing, LU Yongze, FU Liang,et al. Decoupling of DAMO Archaea from DAMO bacteria in a methane-driven microbial fuel cell[J]. Water Research, 2017, 110:112-119. doi: 10.1016/j.watres.2016.12.006
|
60 |
LU Yongze, DING Zhaowei, DING Jing,et al. Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria[J]. Water Research, 2015, 87:385-394. doi: 10.1016/j.watres.2015.09.042
|
61 |
|
|
SHEN Lidong, JIN Jinghao, LIU Xin. Research progress on Anaerobic methanotrophs in inland wetlands and freshwater aquatic systems[J]. Acta Ecologica Sinica, 2022, 42(9):3842-3855. doi: 10.5846/stxb202101160171
|
62 |
SHEN Lidong, OUYANG Liao, ZHU Yizhu,et al. Active pathways of anaerobic methane oxidation across contrasting riverbeds[J]. The ISME Journal, 2019, 13(3):752-766. doi: 10.1038/s41396-018-0302-y
|
63 |
SMIT N T, RUSH D, SAHONERO-CANAVESI D X,et al. Demethylated hopanoids in ‘ Ca. Methylomirabilis oxyfera’ as biomarkers for environmental nitrite-dependent methane oxidation[J]. Organic Geochemistry, 2019, 137:103899. doi: 10.1016/j.orggeochem.2019.07.008
|