1 |
王兴亚.利用先进纳米探测技术对纳米气泡特性的研究[D].上海:中国科学院上海应用物理研究所, 2018.
URL
|
2 |
Wang Y L , Wang N , Jia R , et al. Research on CFD numerical simulation and flow field characteristics of countercurrent-cocurrent dissolved air flotation[J]. Water Science & Technology, 2018, 77 (5): 1280- 1292.
URL
|
3 |
Agarwal A , Ng W J , Liu Y . Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84 (9): 1175- 1180.
doi: 10.1016/j.chemosphere.2011.05.054
|
4 |
Shu L , Wang Q , Ma H , et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J]. Separation & Purification Technology, 2010, 71 (3): 337- 346.
URL
|
5 |
Ushikubo F Y , Furukawa T , Nakagawa R , et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 361 (1/2/3): 31- 37.
URL
|
6 |
Pérez-Garibay R , Martínez-Ramos E , Rubio J . Gas dispersion measurements in microbubble flotation systems[J]. Minerals Engineering, 2012, 26, 34- 40.
doi: 10.1016/j.mineng.2011.10.006
|
7 |
Khuntia S , Majumder S K , Ghosh P . Microbubble-aided water and wastewater purification:a review[J]. Reviews in Chemical Engineering, 2012, 28, 191- 221.
URL
|
8 |
Edzwald J K . Dissolved air flotation and me[J]. Water Research, 2010, 44 (7): 2077- 2106.
doi: 10.1016/j.watres.2009.12.040
|
9 |
Ebina K , Shi K , Hirao M , et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice[J]. Plos One, 2013, 8 (6): e65339.
doi: 10.1371/journal.pone.0065339
|
10 |
Terasaka K , Hirabayashi A , Nishino T , et al. Development of microbubble aerator for waste water treatment using aerobic activated sludge[J]. Chemical Engineering Science, 2011, 66 (14): 3172- 3179.
doi: 10.1016/j.ces.2011.02.043
|
11 |
Wu Z , Chen H , Dong Y , et al. Cleaning using nanobubbles:defouling by electrochemical generation of bubbles[J]. Journal of Colloid & Interface Science, 2008, 328 (1): 10- 14.
URL
|
12 |
Temesgen T , Bui T T , Han M , et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques:a review[J]. Advances in Colloid and Interface Science, 2017, 246, 40- 51.
doi: 10.1016/j.cis.2017.06.011
|
13 |
王静超, 马军, 王静海. 气浮净水技术在给水处理中的应用及研究概况[J]. 工业水处理, 2004, 24 (7): 9- 12.
doi: 10.3969/j.issn.1005-829X.2004.07.003
|
14 |
王永磊, 王文浩, 代莎莎, 等. 微纳米气泡发生机理及其应用研究进展[J]. 山东建筑大学学报, 2017, 32 (5): 474- 480.
URL
|
15 |
Li H , Hu L , Xia Z . Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6 (9): 3676- 3687.
doi: 10.3390/ma6093676
|
16 |
Bui T T , Nam S N , Han M . Micro-bubble flotation of freshwater algae:a comparative study of differing shapes and sizes[J]. Separation Science & Technology, 2015, 50 (7): 1066- 1072.
URL
|
17 |
Dockko S , Han M Y . Fundamental characteristics of bubbles and ramifications for the flotation process[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2004, 50 (12): 207- 214.
URL
|
18 |
Ahmed N , Jameson G J . The effect of bubble size on the rate of flotation of fine particles[J]. International Journal of Mineral Processing, 1985, 14 (3): 195- 215.
doi: 10.1016/0301-7516(85)90003-1
|
19 |
Yoon R H . Microbubble flotation[J]. Minerals Engineering, 1993, 6 (6): 619- 630.
doi: 10.1016/0892-6875(93)90116-5
|
20 |
Tao D , Rick H . Nanobubble generation and its applications in froth flotation(part Ⅱ):fundamental study and theoretical analysis[J]. Mining Science & Technology, 2010, 20 (2): 159- 177.
URL
|
21 |
Tai J C , Kumar M , Chen S Y , et al. Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater[J]. Separation and Purification Technology, 2007, 58 (1): 61- 67.
doi: 10.1016/j.seppur.2007.07.022
|
22 |
Liu S , Wang Q H , Ma H Z , et al. Effect of micro-bubbles on coagulation floation process of dyeing wastewater[J]. Separation and Purification Technology, 2010, 71 (3): 337- 346.
doi: 10.1016/j.seppur.2009.12.021
|
23 |
Collins G L , Jameson G J . Experiments on the flotation of fine particles:the influence of particle size and charge[J]. Chemical Engineering Science, 1976, 31 (11): 985- 991.
doi: 10.1016/0009-2509(76)87019-4
|
24 |
Teixeira M R , Sousa V , Rosa M J . Investigating dissolved air flotation performance with cyanobacterial cells and filaments[J]. Water Research, 2010, 44 (11): 3337- 3344.
doi: 10.1016/j.watres.2010.03.012
|
25 |
Takahashi M , Chiba K , Li P . Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B, 2007, 111 (6): 1343- 1347.
doi: 10.1021/jp0669254
|
26 |
Han M , Kim W , Dockko S . Collision efficiency factor of bubble and particle(alpha bp) in DAF:theory and experimental verification[J]. Water Science & Technology, 2001, 43 (8): 139- 144.
URL
|
27 |
Tasaki T , Wada T , Fujimoto K , et al. Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles[J]. Journal of Hazardous Materials, 2009, 162 (2/3): 1103- 1110.
URL
|
28 |
Binnig G , Quate C F , Gerber C . Atomic force microscope[J]. Physical Review Letters, 2018, 56 (9): 930- 933.
URL
|
29 |
Oliveira C , Rodrigues R T , Rubio J . A new technique for characterizing aerated flocs in a flocculation-microbubble flotation system[J]. International Journal of Mineral Processing, 2010, 96 (1/2/3/4): 36- 44.
URL
|
30 |
Rodrigues R T , Rubio J . New basis for measuring the size distribution of bubbles[J]. Minerals Engineering, 2003, 16 (8): 757- 765.
doi: 10.1016/S0892-6875(03)00181-X
|
31 |
Zhang W H , Zhang J , Zhao B , et al. Microbubble size distribution measurement in a daf system[J]. Industrial & Engineering Chemistry Research, 2015, 54 (18): 5179- 5183.
URL
|
32 |
Han M Y , Park Y H , Yu T J . Development of a new method of measuring bubble size[J]. Water Science and Technology:Water Supply, 2002, 2 (2): 77- 83.
doi: 10.2166/ws.2002.0048
|
33 |
Couto H J B , Nunes D G , Neumann R , et al. Micro-bubble size distribution measurements by laser diffraction technique[J]. Minerals Engineering, 2009, 22 (4): 330- 335.
doi: 10.1016/j.mineng.2008.09.006
|
34 |
Butt H J , Cappella B , Kappl M . Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59 (1/2/3/4/5/6): 1- 152.
URL
|
35 |
Shu L , Oshita S , Makino Y , et al. Oxidative capacity of nanobubbles and its effect on seed germination[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (3): 67- 93.
URL
|
36 |
Parkinson L , Sedev R , Fornasiero D , et al. The terminal rise velocity of 10-100μm diameter bubbles in water[J]. Journal of Colloid and Interface Science, 2008, 322 (1): 168- 172.
doi: 10.1016/j.jcis.2008.02.072
|
37 |
Takahashi M . Zeta potential of microbubbles in aqueous solutions:electrical properties of the gas-water interface[J]. Journal of Physical Chemistry B, 2005, 109 (46): 21858- 21864.
doi: 10.1021/jp0445270
|
38 |
Tomiyama A , Celata G P , Hosokawa S , et al. Terminal velocity of single bubbles in surface tension force dominant regime[J]. International Journal of Multiphase Flow, 2002, 28 (9): 1497- 1519.
doi: 10.1016/S0301-9322(02)00032-0
|
39 |
Azgomi F , Gomez C O , Finch J A . Correspondence of gas holdup and bubble size in presence of different frothers[J]. International Journal of Mineral Processing, 2007, 83 (1/2): 1- 11.
URL
|
40 |
Lundh M , Jonsson L , Dahlquist J . The influence of contact zone configuration on the flow structure in a dissolved air flotation pilot plant[J]. Water Research, 2002, 36 (6): 1585- 1595.
doi: 10.1016/S0043-1354(01)00357-8
|
41 |
Yalcin T , Byers A , Ughadpaga K . Dissolved gas method of generating bubbles for potential use in ore flotation[J]. Mineral Processing & Extractive Metallurgy Review, 2002, 23 (3/4): 181- 197.
URL
|
42 |
Boyer C , Duquenne A M , Wild G . Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chemical Engineering Science, 2002, 57 (16): 3185- 3215.
doi: 10.1016/S0009-2509(02)00193-8
|
43 |
Gomez C O , Cortés-López F , Finch J A . Industrial testing of a gas holdup sensor for flotation systems[J]. Minerals Engineering, 2003, 16 (6): 493- 501.
doi: 10.1016/S0892-6875(03)00083-9
|
44 |
Han M , Dockko S . Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency[J]. Journal of Civil Engineering, 1998, 2 (4): 461- 466.
URL
|
45 |
Cho S H , Kim J Y , Chun J H , et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 269 (1/2/3): 28- 34.
URL
|
46 |
Bui T T , Han M . Removal of Phormidium sp. by positively charged bubble flotation[J]. Minerals Engineering, 2015, 72, 108- 114.
doi: 10.1016/j.mineng.2014.12.008
|