1 |
BESSE J P, GARRIC J. Human pharmaceuticals in surface waters:Implementation of a priori tization methodology and application to the French situation[J]. Toxicology Letters, 2008, 176(2):104-123. doi: 10.1016/j.toxlet.2007.10.012
|
2 |
BADRAN I, MANASRAH A D, NASSAR N N. A combined experimental and density functional theory study of metformin oxy-cracking for pharmaceutical wastewater treatment[J]. RSC Advances, 2019, 9(24):13403-13413. doi: 10.1039/c9ra01641d
|
3 |
Federation I D. IDF Diabetes Atlas,eighth Edition[R]. Brussels:International Diabetes Federation,2017.
|
4 |
CHEN Chang, KOSTAKIS C, IRVINE R J,et al. Evaluation of pre-analysis loss of dependent drugs in wastewater:Stability and binding assessments[J]. Drug Testing and Analysis, 2013, 5(8):716-721. doi: 10.1002/dta.1428
|
5 |
YAN Jihao, XIAO Yang, TAN Dongqin,et al. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China[J]. Chemosphere, 2019, 222:688-695. doi: 10.1016/j.chemosphere.2019.01.151
|
6 |
SCHEURER M, MICHEL A, BRAUCH H J,et al. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment[J]. Water Research, 2012, 46(15):4790-4802. doi: 10.1016/j.watres.2012.06.019
|
7 |
AMBROSIO-ALBUQUERQUE E P, CUSIOLI L F, BERGAMASCO R,et al. Metformin environmental exposure:A systematic review[J]. Environmental Toxicology and Pharmacology, 2021, 83:103588. doi: 10.1016/j.etap.2021.103588
|
8 |
HUBER S, REMBERGER M,KAJ L,et al. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water,sludge,recipient water and sediment from Faroe Islands,Iceland and Greenland[J]. Science of the Total Environment, 2016, 562:13-25. doi: 10.1016/j.scitotenv.2016.03.063
|
9 |
NIEMUTH N J, KLAPER R D. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish[J]. Chemosphere, 2015, 135:38-45. doi: 10.1016/j.chemosphere.2015.03.060
|
10 |
DE JESUS GAFFNEY V, CARDOSO V V, CARDOSO E,et al. Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant:Removal efficiency through conventional treatment processes[J]. Environmental Science and Pollution Research International, 2017, 24(17):14717-14734. doi: 10.1007/s11356-017-9012-7
|
11 |
SANTOS L H M L M, GROS M, RODRIGUEZ-MOZAZ S,et al. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters:Identification of ecologically relevant pharmaceuticals[J]. Science of the Total Environment, 2013, 461/462:302-316. doi: 10.1016/j.scitotenv.2013.04.077
|
12 |
TRAUTWEIN C, BERSET J D, WOLSCHKE H,et al. Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle[J]. Environment International, 2014, 70:203-212. doi: 10.1016/j.envint.2014.05.008
|
13 |
SCHEURER M, SACHER F, BRAUCH H J. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany[J]. Journal of Environmental Monitoring:JEM, 2009, 11(9):1608-1613. doi: 10.1039/b909311g
|
14 |
KONG Lingxiao, KADOKAMI K, WANG Shaopo,et al. Monitoring of 1 300 organic micro-pollutants in surface waters from Tianjin,North China[J]. Chemosphere, 2015, 122:125-130. doi: 10.1016/j.chemosphere.2014.11.025
|
15 |
KOT-WASIK A, JAKIMSKA A, ŚLIWKA-KASZYŃSKA M. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants[J]. Environmental Monitoring and Assessment, 2016, 188(12):661. doi: 10.1007/s10661-016-5637-0
|
16 |
KOSMA C I, LAMBROPOULOU D A, ALBANIS T A. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters[J]. Water Research, 2015, 70:436-448. doi: 10.1016/j.watres.2014.12.010
|
17 |
KIM M, GUERRA P, SHAH A,et al. Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2014, 69(11):2221-2229. doi: 10.2166/wst.2014.145
|
18 |
MARTÍN J, BUCHBERGER W, SANTOS J L,et al. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples[J]. Journal of Chromatography B, 2012, 895/896:94-101. doi: 10.1016/j.jchromb.2012.03.023
|
19 |
SHRAIM A, DIAB A, ALSUHAIMI A,et al. Analysis of some pharmaceuticals in municipal wastewater of almadinah almunawarah[J]. Arabian Journal of Chemistry, 2017, 10:S719-S729. doi: 10.1016/j.arabjc.2012.11.014
|
20 |
BLAIR B D, CRAGO J P, HEDMAN C J,et al. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern[J]. Chemosphere, 2013, 93(9):2116-2123. doi: 10.1016/j.chemosphere.2013.07.057
|
21 |
ELLIOTT S M, VANDERMEULEN D D. A regional assessment of chemicals of concern in surface waters of four Midwestern United States National Parks[J]. Science of the Total Environment, 2017, 579:1726-1735. doi: 10.1016/j.scitotenv.2016.11.114
|
22 |
CARMONA E, ANDREU V, PICÓ Y. Multi-residue determination of 47 organic compounds in water,soil,sediment and fish—Turia River as case study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146:117-125. doi: 10.1016/j.jpba.2017.08.014
|
23 |
ALI A M, RØNNING H T, ALARIF W,et al. Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea[J]. Chemosphere, 2017, 175:505-513. doi: 10.1016/j.chemosphere.2017.02.095
|
24 |
HOUTMAN C J, KROESBERGEN J, LEKKERKERKER-TEUNISSEN K,et al. Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data[J]. Science of the Total Environment, 2014, 496:54-62. doi: 10.1016/j.scitotenv.2014.07.022
|
25 |
QUINTÃO F J O, FREITAS J R L, DE FÁTIMA MACHADO C,et al. Characterization of metformin by-products under photolysis,photocatalysis,ozonation and chlorination by high-performance liquid chromatography coupled to high-resolution mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(21):2360-2368. doi: 10.1002/rcm.7724
|
26 |
|
|
XU Qiuyue, CHEN Beibei, HE Man,et al. Speciation analysis of inorganic arsenic in environmental water samples by ICP-MS with magnetic solid phase extraction based on sulfhydryl functionalized magnetic sorbents[J]. Journal of Instrumental Analysis, 2021, 40(6):954-959. doi: 10.3969/j.issn.1004-4957.2021.06.023
|
27 |
MAĆERAK A L, KERKEZ Đ, BEČELIĆ-TOMIN M,et al. Removal of diclofenac and metformin from water in laboratory photo reactor[C]//Environment,Green Technology,and Engineering International Conference. Basel Switzerland:MDPI,2018.
|
28 |
ZHU Shuai, LIU Yunguo, LIU Shaobo,et al. Adsorption of emerging contaminant metformin using graphene oxide[J]. Chemosphere, 2017, 179:20-28. doi: 10.1016/j.chemosphere.2017.03.071
|
29 |
ALNAJJAR M, HETHNAWI A, NAFIE G,et al. Silica-alumina composite as an effective adsorbent for the removal of metformin from water[J]. Journal of Environmental Chemical Engineering, 2019, 7(3):102994. doi: 10.1016/j.jece.2019.102994
|
30 |
POURSAT B A J, VAN SPANNING R J M, BRASTER M,et al. Biodegradation of metformin and its transformation product,guanylurea,by natural and exposed microbial communities[J]. Ecotoxicology and Environmental Safety, 2019, 182:109414. doi: 10.1016/j.ecoenv.2019.109414
|
31 |
TRAUTWEIN C, KÜMMERER K. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea[J]. Chemosphere, 2011, 85(5):765-773. doi: 10.1016/j.chemosphere.2011.06.057
|
32 |
BRIONES R M, ZHUANG Weiqin, SARMAH A K. Biodegradation of metformin and guanylurea by aerobic cultures enriched from sludge[J]. Environmental Pollution, 2018, 243:255-262. doi: 10.1016/j.envpol.2018.08.075
|
33 |
MAO Yuanxiang, DONG Huiyu, LIU Shaogang,et al. Accelerated oxidation of iopamidol by ozone/peroxymonosulfate(O 3/PMS) process:Kinetics,mechanism,and simultaneous reduction of iodinated disinfection by-product formation potential[J]. Water Research, 2020, 173:115615. doi: 10.1016/j.watres.2020.115615
|
34 |
JIN Xiaohui, PELDSZUS S, HUCK P M. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes[J]. Water Research, 2012, 46(19):6519-6530. doi: 10.1016/j.watres.2012.09.026
|
35 |
MUÑOZ F, VON SONNTAG C. The reactions of ozone with tertiary amines including the complexing agents nitrilotriacetic acid(NTA) and ethylenediaminetetraacetic acid(EDTA) in aqueous solution[J]. Journal of the Chemical Society,Perkin Transactions 2, 2000(10):2029-2033. doi: 10.1039/b004417m
|
36 |
HUBER M M, KORHONEN S, TERNES T A,et al. Oxidation of pharmaceuticals during water treatment with chlorine dioxide[J]. Water Research, 2005, 39(15):3607-3617. doi: 10.1016/j.watres.2005.05.040
|
37 |
ASEMAN-BASHIZ E, SAYYAF H. Metformin degradation in aqueous solutions by electro-activation of persulfate and hydrogen peroxide using natural and synthetic ferrous ion sources[J]. Journal of Molecular Liquids, 2020, 300:112285. doi: 10.1016/j.molliq.2019.112285
|
38 |
WOLS B A, HARMSEN D J H, BEERENDONK E F,et al. Predicting pharmaceutical degradation by UV(LP)/H 2O 2 processes:A kinetic model[J]. Chemical Engineering Journal, 2014, 255:334-343. doi: 10.1016/j.cej.2014.05.088
|
39 |
DE LA CRUZ N, GIMÉNEZ J, ESPLUGAS S,et al. Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge[J]. Water Research, 2012, 46(6):1947-1957. doi: 10.1016/j.watres.2012.01.014
|
40 |
KARIMIAN S, MOUSSAVI G, FANAEI F,et al. Shedding light on the catalytic synergies between Fe(Ⅱ) and PMS in vacuum UV(VUV/Fe/PMS) photoreactors for accelerated elimination of pharmaceuticals:The case of metformin[J]. Chemical Engineering Journal, 2020, 400:125896. doi: 10.1016/j.cej.2020.125896
|
41 |
CARBULONI C F, SAVOIA J E, SANTOS J S P,et al. Degradation of metformin in water by TiO 2-ZrO 2 photocatalysis[J]. Journal of Environmental Management, 2020, 262:110347. doi: 10.1016/j.jenvman.2020.110347
|
42 |
ORSETTI F R, BUKMAN L, SANTOS J S,et al. Methylene blue and metformin photocatalytic activity of CeO 2-Nb 2O 5 coatings is dependent on the treatment time of plasma electrolytic oxidation on titanium[J]. Applied Surface Science Advances, 2021, 6:100143. doi: 10.1016/j.apsadv.2021.100143
|