1 |
|
|
REN Yuan, WEI Chaohai, WU Chaofei,et al. Environmental and biological characteristics of coking wastewater[J]. Acta Scientiae Circumstantiae, 2007, 27(7):1094-1100. doi: 10.3321/j.issn:0253-2468.2007.07.004
|
2 |
李婷,张玉秀,祖德彪,等. 红球菌(Rhodococcus sp.) KDPy1在焦化废水中的生物强化作用[J]. 工业水处理,2021,41(10):96-103.
|
|
LI Ting, ZHANG Yuxiu, ZU Debiao,et al. Bioaugmentation of Rhodococcus sp. KDPy1 in coking wastewater treatment[J]. Industrial Water Treatment,2021,41(10):96-103.
|
3 |
易鑫荣. 焦化废水处理工程实例[J]. 净水技术,2021,40(S1):390-396.
|
|
YI Xinrong. Engineering design of coking wastewater treatment[J]. Water Purification Technology,2021,40(S1):390-396.
|
4 |
杨昌进. 焦化废水处理系统提升改造的措施[J]. 化工管理,2021(5):43-44.
|
|
YANG Changjin. Measures for upgrading coking wastewater treatment system[J]. Chemical Enterprise Management,2021(5):43-44.
|
5 |
程伟健. 焦化废水生化及深度处理工程实例[J]. 煤炭加工与综合利用,2021(5):73-77.
|
|
CHENG Weijian. A engineering example of biochemical and advanced treatment of coking wastewater[J]. Coal Processing & Comprehensive Utilization,2021(5):73-77.
|
6 |
何绪文,员润,吴姁,等. 焦化废水深度处理新技术及其相互耦合特征研究[J]. 煤炭科学技术,2021,49(1):175-182.
|
|
HE Xuwen, YUAN Run, WU Xu,et al. Research on characteristics of new technologies and intercoupling technologies for advanced treatment of coking wastewcter[J]. Coal Science and Technology,2021,49(1):175-182.
|
7 |
李欢,陶若虹,孙斌,等. 焦化废水处理工程设计实例及运行效果[J]. 中国给水排水,2018,34(4):97-101.
|
|
LI Huan, TAO Ruohong, SUN Bin,et al. Case study on design and operation of a coking wastewater treatment project[J]. China Water & Wastewater,2018,34(4):97-101.
|
8 |
杨志超. 焦化废水全流程工艺设计与调试[J]. 新型工业化,2021,11(3):227-229.
|
|
YANG Zhichao. Process design and commissioning of the whole process of coking wastewate[J]. The Journal of New Industrialization,2021,11(3):227-229.
|
9 |
李变云,武丽琴. 焦化废水深度处理技术研究[J]. 山西化工,2020,40(5):209-210.
|
|
LI Bianyun, WU Liqin. Study on advanced treatment technology of coking wastewater[J]. Shanxi Chemical Industry,2020,40(5):209-210.
|
10 |
|
|
CHEN Yang, WU Xiankun, YANG Feng,et al. Research progress in heterogeneous catalytic ozonation of ammonia nitrogen in water[J]. Shandong Chemical Industry, 2020, 49(22):68. doi: 10.3969/j.issn.1008-021X.2020.22.025
|
11 |
WU Muyan, KWOK Y H, ZHANG Yingguang,et al. Synergetic effect of vacuum ultraviolet photolysis and ozone catalytic oxidation for toluene degradation over MnO 2-rGO composite catalyst[J]. Chemical Engineering Science, 2021, 231:116288. doi: 10.1016/j.ces.2020.116288
|
12 |
马志国. 工业废水处理中臭氧氧化技术的应用研究[J]. 皮革制作与环保科技,2020,1(23):49-53.
|
|
MA Zhiguo. Application research of ozone oxidation technology in industrial wastewater treatment[J]. Leather Manufacture and Environmental Technology,2020,1(23):49-53.
|
13 |
|
|
LIAO Mingsen, ZHAO Yuehong, NING Pengge,et al. Operation optimization of ammonia-nitrogen removal process in coking wastewater treatment[J]. Computers and Applied Chemistry, 2014, 31(6):669-674. doi: 10.1016/b978-0-444-63576-1.50114-x
|
14 |
廖明森. 焦化废水处理过程操作优化[D]. 天津:天津大学,2014.
|
|
LIAO Mingsen. The operation optimization of coking wastewater treatment process[D]. Tianjin:Tianjin University,2014.
|
15 |
白建庭,王志强,常卓. 空气悬浮风机在节能降噪技改中的应用[J]. 水泥技术,2021(2):102-104.
|
|
BAI Jianting, WANG Zhiqiang, CHANG Zhuo. Application of air suspension blower in energy saving and noise reduction[J]. Cement Technology,2021(2):102-104.
|
16 |
张海刚. 磁悬浮离心鼓风机集中供风系统开发应用[J]. 山东冶金,2020,42(6):60-62.
|
|
ZHANG Haigang. Development and application of centralized air supply system for maglev centrifugal blower[J]. Shandong Metallurgy,2020,42(6):60-62.
|