1 |
LIN Yiqing, CHEN Anwei, LUO Si,et al. Cyanobacterial bloom mitigation by sanguinarine and its effects on aquatic microbial community structure[J]. Environmental Pollution, 2019, 253:497-506. doi: 10.1016/j.envpol.2019.07.060
|
2 |
TSAI K P, UZUN H, CHEN Huan,et al. Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate:Trade-offs between reducing algal organic matter and promoting disinfection byproduct formation[J]. Water Research, 2019, 158:227-236. doi: 10.1016/j.watres.2019.04.013
|
3 |
ZHOU Shiqing, SHAO Yisheng, GAO Naiyun,et al. Effects of different algaecides on the photosynthetic capacity,cell integrity and microcystin-LR release of Microcystis aeruginosa [J]. Science of the Total Environment, 2013, 463/464:111-119. doi: 10.1016/j.scitotenv.2013.05.064
|
4 |
LIN Yiqing, CHEN Anwei, HE Yaxian,et al. Responses of Microcystis aeruginosa(Cyanobacteria) to sanguinarine stress:Morphological and physiological characteristics associated with competitive advantage[J]. Phycologia, 2019, 58(3):260-268. doi: 10.1080/00318884.2018.1561966
|
5 |
WANG Binliang, SONG Qingyang, LONG Jijian,et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes[J]. Chemosphere, 2019, 228:503-512. doi: 10.1016/j.chemosphere.2019.04.138
|
6 |
方雨博,王趁义,汤唯唯,等. 除藻技术的优缺点比较、应用现状与新技术进展[J]. 工业水处理,2020,40(9):1-6.
|
|
FANG Yubo, WANG Chenyi, TANG Weiwei,et al. Comparison of advantages and disadvantages of algae removal technology,application status and new technology progress[J]. Industrial Water Treatment,2020,40(9):1-6.
|
7 |
BÄHRS H, PUTSCHEW A, STEINBERG C E W. Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH[J]. Environmental Science and Pollution Research, 2013, 20(1):146-154. doi: 10.1007/s11356-012-1132-5
|
8 |
NAKAI S, INOUE Y, HOSOMI M. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7):1855-1859. doi: 10.1016/s0043-1354(00)00444-9
|
9 |
DZIGA D, SUDA M, BIALCZYK J,et al. The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols[J]. Environmental Toxicology, 2007, 22(4):341-346. doi: 10.1002/tox.20276
|
10 |
SHAO Jihai, WU Zhongxing, YU Gongliang,et al. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806(Cyanobacteria):From views of gene expression and antioxidant system[J]. Chemosphere, 2009, 75(7):924-928. doi: 10.1016/j.chemosphere.2009.01.021
|
11 |
WANG Jie, LIU Qi, FENG Jia,et al. Effect of high-doses pyrogallol on oxidative damage,transcriptional responses and microcystins synthesis in Microcystis aeruginosa TY001(Cyanobacteria)[J]. Ecotoxicology and Environmental Safety, 2016, 134:273-279. doi: 10.1016/j.ecoenv.2016.09.010
|
12 |
WANG Jie, LIU Qi, FENG Jia,et al. Photosynthesis inhibition of pyrogallol againstthe bloom-forming Cyanobacterium Microcystis aeruginosa TY001[J]. Polish Journal of Environmental Studies, 2016, 25(6):2601-2608. doi: 10.15244/pjoes/63412
|
13 |
ZHU Junying, LIU Biyun, WANG Jing,et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte( Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2):196-203. doi: 10.1016/j.aquatox.2010.02.011
|
14 |
LU Zhiying, ZHANG Yongyuan, GAO Yunni,et al. Effects of pyrogallic acid on Microcystis aeruginosa:Oxidative stress related toxicity[J]. Ecotoxicology and Environmental Safety, 2016, 132:413-419. doi: 10.1016/j.ecoenv.2016.06.039
|
15 |
|
|
DING Huijun, ZHANG Weihao, ZHOU Weibin,et al. Study on growth of microcystic aeruginosa affected by two phenolic allelochemicals[J]. Environmental Science & Technology, 2007, 30(7):1-3. doi: 10.3969/j.issn.1003-6504.2007.07.001
|
16 |
NIE Jiangli, SHII C, YI Pei,et al. Control of Microcystis aeruginosa with Galla chinensis[J]. Israeli Journal of Aquaculture - Bamidgeh, 2015, 67:1-10. doi: 10.46989/001c.20710
|
17 |
NI L X, ACHARYA K, HAO X Y,et al. Antioxidant and metabolism responses to polyphenol stress in cyanobacterium Microcystis aeruginosa [J]. Journal of Environmental Science and Health. Part. B,Pesticides,Food Contaminants,and Agricultural Wastes, 2013, 48(2):153-161. doi: 10.1080/03601234.2013.727722
|
18 |
LI Fengmin, HU Hongying. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis[J]. Applied and Environmental Microbiology, 2005, 71(11):6545-6553. doi: 10.1128/aem.71.11.6545-6553.2005
|
19 |
|
|
LI Yan, LIU Lijun, LIANG Wenyan. Physiological and biochemical responses of Microcystis aeruginosa to catechol stress[J]. Chinese Journal of Environmental Engineering, 2016, 10(6):2781-2785. doi: 10.12030/j.cjee.201501138
|
20 |
HONG Yu, HU Hongying, XIE Xing,et al. Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate(EMA) isolated from reed( Phragmites communis)[J]. Journal of Plant Physiology, 2008, 165(12):1264-1273. doi: 10.1016/j.jplph.2007.10.007
|
21 |
HONG Yu, HU Hongying, LI Fengmin. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate(EMA) on cyanobacterium Microcystis aeruginosa [J]. Ecotoxicology and Environmental Safety, 2008, 71(2):527-534. doi: 10.1016/j.ecoenv.2007.10.010
|
22 |
YAMAMOTO Y, KOUCHIWA T, HODOKI Y,et al. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake[J]. Journal of Applied Phycology, 1998, 10(4):391-397. doi: 10.1023/a:1008077414808
|
23 |
DAI Ruihua, LIU Huijuan, QU Jiuhui,et al. Effects of amino acids on microcystin production of the Microcystis aeruginosa [J]. Journal of Hazardous Materials, 2009, 161(2/3):730-736. doi: 10.1016/j.jhazmat.2008.04.015
|
24 |
|
|
LIN Bigui, YANG Liuyan, XIAO Lin,et al. Mechanism of the inhibition effect of lysine on Microcystis aeruginosa [J]. Journal of Agro-Environment Science, 2008, 27(4):1561-1565. doi: 10.3321/j.issn:1672-2043.2008.04.050
|
25 |
|
|
LIN Bigui, YANG Liuyan, XIAO Lin,et al. Mechanism of lysine inhibiting Microcystis aeruginosa cells[J]. Journal of Ecology and Rural Environment, 2008, 24(4):68-72. doi: 10.3969/j.issn.1673-4831.2008.04.014
|
26 |
LÜRLING M, VAN OOSTERHOUT F. Effect of selected plant extracts and D- and L-lysine on the cyanobacterium Microcystis aeruginosa [J]. Water, 2014, 6(6):1807-1825. doi: 10.3390/w6061807
|
27 |
TIAN Lili, CHEN Meng, REN Chongyang,et al. Anticyanobacterial effect of l-lysine on Microcystis aeruginosa [J]. RSC Advances, 2018, 8(38):21606-21612. doi: 10.1039/c8ra00434j
|
28 |
KAYA K, LIU Yongding, SHEN Yinwu,et al. Selective control of toxic Microcystis water blooms using lysine and malonic acid:An enclosure experiment[J]. Environmental Toxicology, 2005, 20(2):170-178. doi: 10.1002/tox.20092
|
29 |
TAKAMURA Y, YAMADA T, KIMOTO A,et al. Growth inhibition of microcystis cyanobacteria by L-lysine and disappearance of natural microcystis blooms with spraying[J]. Microbes and Environments, 2004, 19(1):31-39. doi: 10.1264/jsme2.19.31
|
30 |
JANČULA D, GREGOROVÁ J, MARŠÁLEK B. Algicidal and cyanocidal effects of selected isoquinoline alkaloids[J]. Aquaculture Research, 2010, 41(4):598-601. doi: 10.1111/j.1365-2109.2009.02342.x
|
31 |
SHAO Jihai, LIU Deming, GONG Daoxin,et al. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action[J]. Aquatic Toxicology, 2013, 142/143:257-263. doi: 10.1016/j.aquatox.2013.08.019
|
32 |
DRÁBKOVÁ M, ADMIRAAL W, MARSÁLEK B. Combined exposure to hydrogen peroxide and light:Selective effects on cyanobacteria,green algae,and diatoms[J]. Environmental Science & Technology, 2007, 41(1):309-314. doi: 10.1021/es060746i
|
33 |
WANG Binliang, WANG Xi, HU Yiwei,et al. The combined effects of UV-C radiation and H 2O 2 on Microcystis aeruginosa,a bloom-forming cyanobacterium[J]. Chemosphere, 2015, 141:34-43. doi: 10.1016/j.chemosphere.2015.06.020
|
34 |
QIAN Haifeng, YU Shuqiong, SUN Zhengqi,et al. Effects of copper sulfate,hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa [J]. Aquatic Toxicology, 2010, 99(3):405-412. doi: 10.1016/j.aquatox.2010.05.018
|
35 |
DRÁBKOVÁ M, MATTHIJS H C P, ADMIRAAL W,et al. Selective effects of H 2O 2 on cyanobacterial photosynthesis[J]. Photosynthetica, 2007, 45(3):363-369. doi: 10.1007/s11099-007-0062-9
|
36 |
KANSOLE M, LIN T F. Impacts of hydrogen peroxide and copper sulfate on the control of Microcystis aeruginosa and MC-LR and the inhibition of MC-LR degrading bacterium bacillus sp[J]. Water, 2017, 9(4):255. doi: 10.3390/w9040255
|
37 |
LIN Lizhou, SHAN Kun, XIONG Qian,et al. The ecological risks of hydrogen peroxide as a cyanocide:Its effect on the community structure of bacterioplankton[J]. Journal of Oceanology and Limnology, 2018, 36(6):2231-2242. doi: 10.1007/s00343-018-7233-3
|
38 |
ZHANG Hui, MENG Ge, MAO Feijian,et al. Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa [J]. Journal of Hazardous Materials, 2019, 367:120-127. doi: 10.1016/j.jhazmat.2018.12.069
|
39 |
TSAI K P. Management of target algae by using copper-based algaecides:Effects of algal cell density and sensitivity to copper[J]. Water,Air,& Soil Pollution, 2016, 227(7):238. doi: 10.1007/s11270-016-2926-8
|
40 |
VAN HULLEBUSCH E, DELUCHAT V, CHAZAL P M,et al. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake:Part Ⅰ. Case of aluminium sulphate[J]. Environmental Pollution, 2002, 120(3):617-626. doi: 10.1016/s0269-7491(02)00192-6
|
41 |
|
|
JIANG Zhongyang, GUO Peiyong. Research progress in the inhibition effect of terrestrial plant on algae allelopathy[J]. Industrial Water Treatment, 2011, 31(12):13-17. doi: 10.11894/1005-829x.2011.31(12).13
|