1 |
谭晓恒,郭少毓,喻相标,等. 焙烧铜渣中磁铁矿的物性转变研究[J]. 有色金属科学与工程,2020,11(5):83-89.
|
|
TAN Xiaoheng, GUO Shaoyu, YU Xiangbiao,et al. Study on the physical property transformation of magnetite in roasted copper slag[J]. Nonferrous Metals Science and Engineering,2020,11(5):83-89.
|
2 |
罗立群,张晓雪,王洪阳. 铜渣磁选过程中元素分布行为研究[J]. 中南大学学报(自然科学版),2022,53(8):2843-2850.
|
|
LUO Liqun, ZHANG Xiaoxue, WANG Hongyang. Distribution of elements in copper slag during magnetic separation[J]. Journal of Central South University(Science and Technology),2022,53(8):2843-2850.
|
3 |
|
|
ZUO Zongliang, LUO Siyi, YU Qingbo,et al. Orthogonal experiments of copper slag particles direct reduction by carbon-containing solid waste reductant[J]. Multipurpose Utilization of Mineral Resources, 2022(5):46-50. doi: 10.1016/j.cej.2020.126671
|
4 |
刘占华,陈文亮,丁银贵,等. 铜渣转底炉直接还原回收铁锌工艺研究[J]. 金属矿山,2019(5):183-187.
|
|
LIU Zhanhua, CHEN Wenliang, DING Yingui,et al. Study on recovery of iron and zinc from copper slag by direct reduction process in rotary hearth furnace[J]. Metal Mine,2019(5):183-187.
|
5 |
郑彬,蒋亮,韩凤兰,等. 铜渣复合硅锰水淬渣后的改质提铁研究[J]. 无机盐工业,2023,55(1):136-143.
|
|
ZHENG Bin, JIANG Liang, HAN Fenglan,et al. Study on reformation and extracting iron of copper slag and silicon-manganese water quenched slag composites[J]. Inorganic Chemicals Industry,2023,55(1):136-143.
|
6 |
HUANOSTA-GUTIÉRREZ T, DANTAS R F, RAMÍREZ-ZAMORA R M,et al. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water[J]. Journal of Hazardous Materials, 2012, 213/214:325-330. doi: 10.1016/j.jhazmat.2012.02.004
|
7 |
GAO Caiqi, YU Wen, ZHU Yichun,et al. Preparation of porous silicate supported micro-nano zero-valent iron from copper slag and used as persulfate activator for removing organic contaminants[J]. Science of the Total Environment, 2021, 754:142131. doi: 10.1016/j.scitotenv.2020.142131
|
8 |
|
|
CHE Liping, YU Yongfu, PANG Jinxing,et al. Synthesis,properties and role mechanism of hydroximic acid as collectors of RE mineral flotation[J]. Chinese Rare Earths, 2004, 25(6):74-79. doi: 10.3969/j.issn.1004-0277.2004.06.019
|
9 |
|
|
YANG Zhaojun, WANG Fengyu, ZHONG Senlin,et al. Flotation mechanism of ilmenite with benzohydroxamic acid[J]. Iron Steel Vanadium Titanium, 2022, 43(4):24-27. doi: 10.7513/j.issn.1004-7638.2022.04.004
|
10 |
LUO Xianping, WANG Junyu, WANG Chunying,et al. Degradation and mineralization of benzohydroxamic acid by synthesized mesoporous La/TiO 2 [J]. International Journal of Environmental Research and Public Health, 2016, 13(10):997. doi: 10.3390/ijerph13100997
|
11 |
MENG Xiangsong, KHOSO S A, Fei LYU,et al. Study on the influence and mechanism of sodium chlorate on COD reduction of minerals processing wastewater[J]. Minerals Engineering, 2019, 134:1-6. doi: 10.1016/j.mineng.2019.01.009
|
12 |
WANG Chunying, ZENG Ting, ZHU Sipin,et al. Synergistic mechanism of rare-earth modification TiO 2 and photodegradation on benzohydroxamic acid[J]. Applied Sciences, 2019, 9(2):339. doi: 10.3390/app9020339
|
13 |
MAKKAR H P S, SHARMA O P, DAWRA R K. Enzymatic degradation of hydroxamate in rumen microbes[J]. Journal of Dairy Science, 1983, 66(11):2337-2342. doi: 10.3168/jds.s0022-0302(83)82090-6
|
14 |
HAN Guihong, DU Yifan, HUANG Yanfang,et al. Efficient removal of hazardous benzohydroxamic acid(BHA) contaminants from the industrial beneficiation wastewaters by facile precipitation flotation process[J]. Separation and Purification Technology, 2021, 279:119718. doi: 10.1016/j.seppur.2021.119718
|
15 |
LI Xiang, JIA Yan, QIN Yang,et al. Iron-carbon microelectrolysis for wastewater remediation:Preparation,performance and interaction mechanisms[J]. Chemosphere, 2021, 278:130483. doi: 10.1016/j.chemosphere.2021.130483
|
16 |
ZHOU Jizhi, LIU Pei, LIU Zeyuan,et al. Simultaneous recovery of phosphorus with nickel purification in nickel-plating wastewater via Fe/C activated H 2O 2 oxidation[J]. Chemical Engineering Journal, 2020, 381:122702. doi: 10.1016/j.cej.2019.122702
|
17 |
LIU Yuzhi, GAO Yu, YAO Bing,et al. Removal of chlortetracycline by nano-micro-electrolysis materials:Application and mechanism[J]. Chemosphere, 2020, 238:124543. doi: 10.1016/j.chemosphere.2019.124543
|
18 |
KOUTSOSPYROS A, PAVLOV J, FAWCETT J,et al. Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction[J]. Journal of Hazardous Materials, 2012, 219/220:75-81. doi: 10.1016/j.jhazmat.2012.03.048
|
19 |
GAO Ying, WANG Feifeng, WU Yan,et al. Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron(nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles[J]. Chemical Engineering Journal, 2016, 285:459-466. doi: 10.1016/j.cej.2015.09.078
|
20 |
HE Feng, ZHAO Dongye. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles:Reaction mechanism and effects of stabilizers,catalysts and reaction conditions[J]. Applied Catalysis B:Environmental, 2008, 84(3/4):533-540. doi: 10.1016/j.apcatb.2008.05.008
|
21 |
XU Cuihong, PAN X, FANG L,et al. Enhanced reduction of organic pollutants by Fe/Cu@Pd ternary metallic nanoparticles under aerobic conditions:Batch and membrane reactor studies[J]. Chemical Engineering Journal, 2019, 360:180-189. doi: 10.1016/j.cej.2018.11.212
|
22 |
XU Zhihua, SUN Zhenhua, ZHOU Yuwei,et al. Enhanced hydrodechlorination of p-chloronitrobenzene by a GAC-Fe-Cu ternary micro-electrolysis system:Synergistic effects and removal mechanism[J]. Separation and Purification Technology, 2020, 237:116391. doi: 10.1016/j.seppur.2019.116391
|
23 |
FU Tao, GONG Xiaobo, GUO Jinrui,et al. Zn-CNTs-Cu catalytic in situ generation of H 2O 2 for efficient catalytic wet peroxide oxidation of high-concentration 4-chlorophenol[J]. Journal of Hazardous Materials, 2021, 401:123392. doi: 10.1016/j.jhazmat.2020.123392
|
24 |
XU Zhihua, SUN Zhenhua, ZHOU Yuwei,et al. Enhanced reactivity and electron selectivity of GAC-Fe-Cu ternary micro-electrolysis system toward p-chloronitrobenzene under oxic conditions[J]. Journal of Hazardous Materials, 2020, 398:123122. doi: 10.1016/j.jhazmat.2020.123122
|
25 |
SUN Zhenzhu, LIU Zhonghai, HAN Le,et al. Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2019, 79(12):2279-2288. doi: 10.2166/wst.2019.234
|
26 |
BRUCKARD W J, SOMERVILLE M, HAO F. The recovery of copper,by flotation,from calcium-ferrite-based slags made in continuous pilot plant smelting trials[J]. Minerals Engineering, 2004, 17(4):495-504. doi: 10.1016/j.mineng.2003.12.004
|
27 |
LONG Hongming, CHUN Tiejun, DI Zhanxia,et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation[J]. Metals, 2016, 6(4):88. doi: 10.3390/met6040088
|
28 |
WANG Miao, YU Wen, ZENG Danliang,et al. Volatilization of Zn and Pb and preparation of integrated micro-electrolysis filter from copper slag and its application for removing Cr(Ⅵ) from aqueous solution[J]. Chemosphere, 2022, 288:132596. doi: 10.1016/j.chemosphere.2021.132596
|
29 |
ZHOU Xianlin, ZHU Deqing, PAN Jian,et al. Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel[J]. ISIJ International, 2015, 55:1347-1352. doi: 10.2355/isijinternational.55.1347
|
30 |
LAI Bo, ZHOU Yuexi, YANG Ping,et al. Degradation of 3,3’-iminobis-propanenitrile in aqueous solution by Fe 0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477. doi: 10.1016/j.chemosphere.2012.09.040
|
31 |
YU Wen, SUN Yangyang, LEI Mengjie,et al. Preparation of micro-electrolysis material from flotation waste of copper slag and its application for degradation of organic contaminants in water[J]. Journal of Hazardous Materials, 2019, 361:221-227. doi: 10.1016/j.jhazmat.2018.08.098
|
32 |
陈蓉,桑伟璇,李小燕,等. 糯米粉负载纳米零价铁去除溶液中U(Ⅵ)的研究[J]. 工业水处理,2021,41(4):66-70.
|
|
CHEN Rong, SANG Weixuan, LI Xiaoyan,et al. Removal of U(Ⅵ) in aqueous solution by nano zero-valent iron loaded with glutinous rice powder[J]. Industrial Water Treatment,2021,41(4):66-70.
|
33 |
YUAN Y, LI H, LAI B,et al. Removal of high-concentration C. I. acid orange 7 from aqueous solution by zerovalent iron/copper(Fe/Cu) bimetallic particles[J]. Industrial & Engineering Chemistry Research, 2014, 53(7):2605-13. doi: 10.1021/ie402739s
|