1 |
GAO Hui, YANG Baojun, LI Nan,et al. Bisphenol A and hormoneassociated cancers:Current progress and perspectives[J]. Medicine, 2015, 94(1):e211. doi: 10.1097/md.0000000000000211
|
2 |
ZHANG Yuhao, MA Liang, CAI Luyun,et al. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme(ACE) inhibitory peptides from native collagenous materials[J]. Ultrasonics Sonochemistry, 2017, 36:88-94. doi: 10.1016/j.ultsonch.2016.11.008
|
3 |
HAIRUDDIN M N, MUBARAK N M, KHALID M,et al. Magnetic palm kernel biochar potential route for phenol removal from wastewater[J]. Environmental Science and Pollution Research, 2019, 26(34):35183-35197. doi: 10.1007/s11356-019-06524-w
|
4 |
LI Zhenhan, ZHANG Wenqiang, SHAN Baoqing. The effects of urbanization and rainfall on the distribution of,and risks from,phenolic environmental estrogens in river sediment[J]. Environmental Pollution, 2019, 250:1010-1018. doi: 10.1016/j.envpol.2019.04.108
|
5 |
JIANG Yingying, ZHAO Haitao, LIANG Jie,et al. Anodic oxidation for the degradation of organic pollutants:Anode materials,operating conditions and mechanisms. A mini review[J]. Electrochemistry Communications, 2021, 123:106912. doi: 10.1016/j.elecom.2020.106912
|
6 |
WANG Yongsheng, YANG Fang, LIU Zhihua,et al. Electrocatalytic degradation of aspen lignin over Pb/PbO 2 electrode in alkali solution[J]. Catalysis Communications, 2015, 67:49-53. doi: 10.1016/j.catcom.2015.03.033
|
7 |
GHANBARLOU H, NASERNEJAD B, NIKBAKHT FINI M,et al. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system[J]. Chemical Engineering Journal, 2020, 395:125025. doi: 10.1016/j.cej.2020.125025
|
8 |
LIU Wei, AI Zhihui, ZHANG Lizhi. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment[J]. Journal of Hazardous Materials, 2012, 243:257-264. doi: 10.1016/j.jhazmat.2012.10.024
|
9 |
LIU Yuxin, YU Zebin, HOU Yanping,et al. Highly efficient Pd-Fe/Ni foam as heterogeneous Fenton catalysts for the three-dimensional electrode system[J]. Catalysis Communications, 2016, 86:63-66. doi: 10.1016/j.catcom.2016.08.012
|
10 |
QIN Yinghua, SUN Meng, LIU Huijuan,et al. AuPd/Fe 3O 4-based three-dimensional electrochemical system for efficiently catalytic degradation of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Electrochimica Acta, 2015, 186:328-336. doi: 10.1016/j.electacta.2015.10.122
|
11 |
SUN Xiuping, PAN Guifang, QI Haiqiang,et al. Dip-coating prepared nickel-foam composite cathodes with hydrophobic layer for atenolol elimination in electro-Fenton system[J]. Journal of Electroanalytical Chemistry, 2020, 856:113725. doi: 10.1016/j.jelechem.2019.113725
|
12 |
MOLLA NADALI PISHNAMAZ H, FARIMANIRAAD H, BAGHDADI M,et al. Application of nickel foam cathode modified by single-wall carbon nanotube in electro-Fenton process coupled with anodic oxidation:Enhancing organic pollutants removal[J]. Journal of Electroanalytical Chemistry, 2023, 929:117130. doi: 10.1016/j.jelechem.2022.117130
|
13 |
BAO Shouchun, TU Mengyao, HUANG Haowei,et al. Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation[J]. Journal of Colloid and Interface Science, 2021, 601:283-293. doi: 10.1016/j.jcis.2021.05.137
|
14 |
HJ 503—2009 水质 挥发酚的测定 4-氨基安替比林分光光度法 [S].
|
15 |
HJ/T 345—2007 水质 铁的测定 邻菲啰啉分光光度法(试行) [S].
|
16 |
CRISPIM A C, DE ARAÚJO D M, MARTÍNEZ-HUITLE C A,et al. Application of electro-Fenton and photoelectro-Fenton processes for the degradation of contaminants in landfill leachate[J]. Environmental Research, 2022, 213:113552. doi: 10.1016/j.envres.2022.113552
|
17 |
GÜMÜŞ D, AKBAL F. Comparison of Fenton and electro-Fenton processes for oxidation of phenol[J]. Process Safety and Environmental Protection, 2016, 103:252-258. doi: 10.1016/j.psep.2016.07.008
|
18 |
BU Lingjun, ZHU Shumin, ZHOU Shiqing. Degradation of atrazine by electrochemically activated persulfate using BDD anode:Role of radicals and influencing factors[J]. Chemosphere, 2018, 195:236-244. doi: 10.1016/j.chemosphere.2017.12.088
|
19 |
WAN Wubo, ZHANG Yan, JI Ran,et al. Metal foam-based fenton-like process by aeration[J]. ACS Omega, 2017, 2(9):6104-6111. doi: 10.1021/acsomega.7b00977
|
20 |
|
|
MA Cui, LIU Yaqi, ZHANG Hanxu,et al. Fenton-like process on treating stabilized old landfill leachate by nano-Fe 3O 4 decorated Zr-pillared bentonite as catalyst[J]. Journal of Huaqiao University(Natural Science), 2018, 39(6):844-850. doi: 10.11830/ISSN.1000-5013.201805044
|
21 |
|
|
TANG Zheren, CHEN Quanyuan, DENG Dongsheng,et al. COD of vinylon waste-water oxidizing treatment by three-dimensional electrode electricity-Fenton using brass copper grains[J]. China Environmental Science, 2017, 37(1):95-101. doi: 10.3969/j.issn.1000-6923.2017.01.011
|
22 |
CAI Jingju, XIE Jinxin, ZHANG Qizhan,et al. Enhanced degradation of 2,4-dichlorophenoxyacetic acid by electro-Fenton in flow-through system using B,Co-TNT anode[J]. Chemosphere, 2022, 292:133470. doi: 10.1016/j.chemosphere.2021.133470
|
23 |
ZHANG Yan, LI Jinhua, BAI Jing,et al. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode[J]. Water Research, 2017, 125:259-269. doi: 10.1016/j.watres.2017.08.054
|
24 |
CHE H, LEE W. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension[J]. Chemosphere, 2011, 82(8):1103-1108. doi: 10.1016/j.chemosphere.2010.12.002
|
25 |
冯卓然,程平统,窦波林,等. 泡沫镍三维电极电芬顿法预处理焦化废水效能研究[J]. 给水排水,2020,56(S2):114-119.
|
|
FENG Zhuoran, CHENG Pingtong, DOU Bolin,et al. Study on pretreatment of coking wastewater by three-dimensional electro-Fenton with foam-nickel-electrode[J]. Water & Wastewater Engineering,2020,56(S2):114-119.
|
26 |
|
|
YANG Xinyu, FU Aidong, WU Xiangqian,et al. Study on degradation of methylene blue by Fenton-like system with modified biochar loaded with iron[J]. Industrial Water Treatment, 2023, 43(4):98-104. doi: 10.19965/j.cnki.iwt.2022-0561
|