1 |
HOU Shengnan, ZHENG Na, TANG Lin,et al. Pollution characteristics,sources,and health risk assessment of human exposure to Cu,Zn,Cd and Pb pollution in urban street dust across China between 2009 and 2018[J]. Environment International, 2019, 128:430-437. doi: 10.1016/j.envint.2019.04.046
|
2 |
张浩,王辉,汤红妍,等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报,2020,40(3):1085-1094.
|
|
ZHANG Hao, WANG Hui, TANG Hongyan,et al. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond[J]. Acta Scientiae Circumstantiae,2020,40(3):1085-1094.
|
3 |
CHEN Yan, HUANG Shenao, YU Kun,et al. Adsorption of lead ions and methylene blue on acrylate-modified hydrochars[J]. Bioresource Technology, 2023, 379:129067. doi: 10.1016/j.biortech.2023.129067
|
4 |
LIU Jinwei, FU Tao, SUN Guangdong,et al. A versatile organic silicate aluminum hybrid coagulant for broad-spectrum removal of heavy metal ions[J]. Chemical Engineering Journal, 2023, 472:145005. doi: 10.1016/j.cej.2023.145005
|
5 |
|
|
QIU Lei, DING Xun, HAN Fei. Enhanced adsorption of lead and cadmium wastewater by eggshell powder[J]. Industrial Water Treatment, 2021, 41(5):53-57. doi: 10.11894/iwt.2020-0746
|
6 |
陈子涵,张笑语,尹兴新,等. DWTR-PAC强化混凝去除水中Cr(Ⅵ)的研究及参数优化[J]. 工业水处理,2022,42(2):88-94.
|
|
CHEN Zihan, ZHANG Xiaoyu, YIN Xingxin,et al. Study on enhanced coagulation with DWTR-PAC to remove Cr(Ⅵ) from water and parameter optimization[J]. Industrial Water Treatment,2022,42(2):88-94.
|
7 |
WANG Hanwen, WANG Hongbo, GAO Changfei,et al. Enhanced removal of copper by electroflocculation and electroreduction in a novel bioelectrochemical system assisted microelectrolysis[J]. Bioresource Technology, 2020, 297:122507. doi: 10.1016/j.biortech.2019.122507
|
8 |
CHEN Chunyu, LIU An, FEI Chi,et al. High-performance nitrogen-doped porous carbon electrode materials for capacitive deionization of Industrial salt-contaminated wastewater[J]. Desalination, 2023, 565:116863. doi: 10.1016/j.desal.2023.116863
|
9 |
牟祺,程国玲. Ti3C2层状电极电吸附去除水中铅离子研究[J]. 工业水处理,2020,40(10):95-98.
|
|
MU Qi, CHENG Guoling. Study on electro-adsorption removal of lead ions from water by Ti3C2 layered electrode[J]. Industrial Water Treatment,2020,40(10):95-98.
|
10 |
DU Jiaxin, XING Wenle, YU Jiaqi,et al. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe 2/mesoporous carbon hollow spheres[J]. Water Research, 2023, 235:119831. doi: 10.1016/j.watres.2023.119831
|
11 |
SONG Zhao, LI Lingyu, CHEN Yidi,et al. Efficient removal and recovery of Cd 2+ from aqueous solutions by capacitive deionization(CDI) method using biochars[J]. Journal of Materials Science & Technology, 2023, 148:10-18. doi: 10.1016/j.jmst.2022.11.016
|
12 |
CHEN Wutong, HE Xin, JIANG Zekai,et al. A capacitive deionization and electro-oxidation hybrid system for simultaneous removal of heavy metals and organics from wastewater[J]. Chemical Engineering Journal, 2023, 451:139071. doi: 10.1016/j.cej.2022.139071
|
13 |
DATAR S D, MANE R S, KUMAR N,et al. Effective removal of heavy metal-lead and inorganic salts by microporous carbon derived from Zeolitic Imidazolate Framework-67 electrode using capacitive deionization[J]. Desalination, 2023, 558:116619. doi: 10.1016/j.desal.2023.116619
|
14 |
MAAROF H I, AJEEL M A, DAUD W M A W,et al. Electrochemical properties and electrode reversibility studies of palm shell activated carbon for heavy metal removal[J]. Electrochimica Acta, 2017, 249:96-103. doi: 10.1016/j.electacta.2017.07.171
|
15 |
SUN Zhenhua, WANG Xuejiang, XIA Siqing,et al. Treatment of Pb(Ⅱ) pollution in livestock wastewater by MgFe 2O 4 modified manure-biochar derived from livestock itself:Special role of endogenous dissolved organic matter and P species[J]. Chemical Engineering Journal, 2022, 446:137068. doi: 10.1016/j.cej.2022.137068
|
16 |
WANG Haiying, HE Yingjie, CHAI Liyuan,et al. Highly-dispersed Fe 2O 3@C electrode materials for Pb 2+ removal by capacitive deionization[J]. Carbon, 2019, 153:12-20. doi: 10.1016/j.carbon.2019.06.066
|
17 |
宫傲,刘洋,赵玉博,等. 电容去离子材料改性及装置改良研究进展[J]. 工业水处理,2021,41(4):14-19.
|
|
GONG Ao, LIU Yang, ZHAO Yubo,et al. Research progress on material modification and device improvement of capacitive deionization[J]. Industrial Water Treatment,2021,41(4):14-19.
|
18 |
BHARATH G, RAMBABU K, BANAT F,et al. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe 3O 4 nanocomposites for capacitive deionization of Cr(Ⅵ) ions[J]. Science of the Total Environment, 2019, 691:713-726. doi: 10.1016/j.scitotenv.2019.07.069
|
19 |
ARUN T, PRABAKARAN K, UDAYABHASKAR R,et al. Carbon decorated octahedral shaped Fe 3O 4 and α-Fe 2O 3 magnetic hybrid nanomaterials for next generation supercapacitor applications[J]. Applied Surface Science, 2019, 485:147-157. doi: 10.1016/j.apsusc.2019.04.177
|
20 |
WANG Haiying, HE Yingjie, CHAI Liyuan,et al. Highly-dispersed Fe 2O 3@C electrode materials for Pb 2+ removal by capacitive deionization[J]. Carbon, 2019, 153:12-20. doi: 10.1016/j.carbon.2019.06.066
|
21 |
HU Xuewen, ZHANG Qicheng, GONG Ning,et al. Remove the F terminal groups on Ti 3C 2T x by reaction with sodium metal to enhance pseudocapacitance[J]. Energy Storage Materials, 2022, 50:802-809. doi: 10.1016/j.ensm.2022.06.028
|
22 |
GANG Haiyin, DENG Haoyu, YAN Lüji,et al. Surface redox pseudocapacitance boosting Fe/Fe 3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deionization[J]. Journal of Colloid and Interface Science, 2023, 638:252-262. doi: 10.1016/j.jcis.2023.01.093
|
23 |
BO Zheng, YI Kexin, YANG Huachao,et al. More from less but precise:Industry-relevant pseudocapacitance by atomically-precise mass-loading MnO 2 within multifunctional MXene aerogel[J]. Journal of Power Sources, 2021, 492:229639. doi: 10.1016/j.jpowsour.2021.229639
|
24 |
PARK B H, CHOI J H. Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application[J]. Electrochimica Acta, 2010, 55(8):2888-2893. doi: 10.1016/j.electacta.2009.12.084
|
25 |
CAO Yiyun, HE Yingjie, GANG Haiyin,et al. Stability study of transition metal oxide electrode materials[J]. Journal of Power Sources, 2023, 560:232710. doi: 10.1016/j.jpowsour.2023.232710
|
26 |
肖遥. 金属氧化物/金属离子复合交联聚乙烯醇多孔材料的制备及其性能的研究[D]. 济南:济南大学,2022.
|
|
XIAO Yao. Preparation and properties of metal oxide/metal ion composite crosslinked polyvinyl alcohol porous materials[D]. Ji'an:University of Ji'nan,2022.
|
27 |
YU Hailan, ZHOU Limin, LIU Yanlin,et al. Biocarbon/polyaniline nanofiber electrodes with high hybrid capacitance and hierarchical porous structure for U(Ⅵ) electrosorption[J]. Desalination, 2023, 564:116773. doi: 10.1016/j.desal.2023.116773
|
28 |
GONZÁLEZ-LÓPEZ M E, LAUREANO-ANZALDO C M, PÉREZ-FONSECA A A,et al. Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor[J]. Journal of Environmental Chemical Engineering, 2021, 9(2):105029. doi: 10.1016/j.jece.2021.105029
|