1 |
MA Bin, WANG Shanyun, CAO Shenbin,et al. Biological nitrogen removal from sewage via anammox:Recent advances[J]. Bioresource Technology, 2016, 200:981-990. doi: 10.1016/j.biortech.2015.10.074
|
2 |
STROUS M, HEIJNEN J J, KUENEN J G,et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5):589-596. doi: 10.1007/s002530051340
|
3 |
JIN Rencun, YANG Guangfeng, YU Jinjin,et al. The inhibition of the anammox process:A review[J]. Chemical Engineering Journal, 2012, 197:67-79. doi: 10.1016/j.cej.2012.05.014
|
4 |
TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A .Influence of temperature and pH on the anammox process:A review and meta-analysis[J]. Chemosphere, 2017, 182:203-214. doi: 10.1016/j.chemosphere.2017.05.003
|
5 |
MADIGAN M T, MARTINKO J M, STAHL D A,et al. Brock biology of microorganisms[M]. 12th Edition. 2008,11:65-73.
|
6 |
LI Guifeng, REN Zhiqi, WANG Ye,et al. Molecular spectroscopy and docking simulation revealed the binding mechanism of phenol onto anammox sludge extracellular polymeric substances[J]. Science of the Total Environment, 2022, 830:154733. doi: 10.1016/j.scitotenv.2022.154733
|
7 |
QIU Songkai, LI Zebing, HU Yuansheng,et al. What’s the best way to achieve successful mainstream partial nitritation-anammox application?[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(10):1045-1077. doi: 10.1080/10643389.2020.1745015
|
8 |
ZHANG Aiyu, WANG Shuai, YANG Mingming,et al. Influence of NaCl salinity on the aggregation performance of anammox granules[J]. Journal of Water Process Engineering, 2021, 39:101687. doi: 10.1016/j.jwpe.2020.101687
|
9 |
BI Zhen, QIAO Sen, ZHOU Jiti,et al. Inhibition and recovery of Anammox biomass subjected to short-term exposure of Cd,Ag,Hg and Pb[J]. Chemical Engineering Journal, 2014, 244:89-96. doi: 10.1016/j.cej.2014.01.062
|
10 |
DI CESARE A, ECKERT E M, D’URSO S,et al. Co-occurrence of integrase 1,antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research, 2016, 94:208-214. doi: 10.1016/j.watres.2016.02.049
|
11 |
WANG Ye, JI Xiaoming, JIN Rencun. How anammox responds to the emerging contaminants:Status and mechanisms[J]. Journal of Environmental Management, 2021, 293:112906. doi: 10.1016/j.jenvman.2021.112906
|
12 |
SINNINGHE DAMSTÉ J S, STROUS M, RIJPSTRA W I,et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908):708-712. doi: 10.1038/nature01128
|
13 |
REN Zhiqi, WANG Hao, ZHANG Lige,et al. A review of anammox-based nitrogen removal technology:From microbial diversity to engineering applications[J]. Bioresource Technology, 2022, 363:127896. doi: 10.1016/j.biortech.2022.127896
|
14 |
PRADHAN N, SWA THI S, WUERTZ S. Inhibition factors and kinetic model for anaerobic ammonia oxidation in a granular sludge bioreactor with Candidatus Brocadia [J]. Chemical Engineering Journal, 2020, 389:123618. doi: 10.1016/j.cej.2019.123618
|
15 |
ZHANG Jing, ZHANG Yanzhuo, ZHAO Baihang,et al. Effects of pH on AHL signal release and properties of ANAMMOX granules with different biomass densities[J]. Environmental Science:Water Research & Technology, 2019, 5(10):1723-1735. doi: 10.1039/c9ew00581a
|
16 |
LIN Lan, LUO Zibin, ISHIDA K,et al. Fast formation of anammox granules using a nitrification-denitrification sludge and transformation of microbial community[J]. Water Research, 2022, 221:118751. doi: 10.1016/j.watres.2022.118751
|
17 |
WANG Chao, LIU Sitong, XU Xiaochen,et al. Role of cyclic diguanylate in affecting microbial community shifts at different pH during the operation of simultaneous partial nitrification,anammox and denitrification process[J]. Science of the Total Environment, 2018, 637:155-162. doi: 10.1016/j.scitotenv.2018.05.015
|
18 |
ZHANG Quan, FAN Niansi, FU Jinjin,et al. Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process:A review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(6):626-648. doi: 10.1080/10643389.2020.1738166
|
19 |
KARASUTA C, WANG Xiaojun, ZHENG Xuwen,et al. Effect of hydraulic retention time on effluent pH in anammox bioreactors:Characteristics of effluent pH and pH as an indicator of reactor performance[J]. Journal of Environmental Management, 2021, 280:111716. doi: 10.1016/j.jenvman.2020.111716
|
20 |
ALAVI-BORAZJANI S A, CAPELA I, TARELHO L A C. Over-acidification control strategies for enhanced biogas production from anaerobic digestion:A review[J]. Biomass and Bioenergy, 2020, 143:105833. doi: 10.1016/j.biombioe.2020.105833
|
21 |
WEI Wei, SHI Xingdong, WU Lan,et al. Calcium peroxide pre-treatment improved the anaerobic digestion of primary sludge and its co-digestion with waste activated sludge[J]. Science of the Total Environment, 2022, 828:154404. doi: 10.1016/j.scitotenv.2022.154404
|
22 |
PARK G, TAKEKAWA M, SODA S,et al. Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures[J]. Journal of Bioscience and Bioengineering, 2017, 123(4):505-511. doi: 10.1016/j.jbiosc.2016.11.009
|
23 |
DE COCKER P, BESSIERE Y, HERNANDEZ-RAQUET G,et al. Enrichment and adaptation yield high anammox conversion rates under low temperatures[J]. Bioresource Technology, 2018, 250:505-512. doi: 10.1016/j.biortech.2017.11.079
|
24 |
Tao YA, LIU Junyu, ZHANG Minglu,et al. Metagenomic insights into the symbiotic relationship in anammox consortia at reduced temperature[J]. Water Research, 2022, 225:119184. doi: 10.1016/j.watres.2022.119184
|
25 |
KOUBA V, VEJMELKOVA D, ZWOLSMAN E,et al. Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks:Distinctions in protein expression,membrane composition and activities[J]. Water Research, 2022, 209:117822. doi: 10.1016/j.watres.2021.117822
|
26 |
KOUBA V, DARMAL R, VEJMELKOVA D,et al. Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures[J]. Biotechnology Progress, 2018, 34(1):277-281. doi: 10.1002/btpr.2570
|
27 |
|
|
HUO Tangran, PAN Juejun, LIU Sitong. Metabolomics insight into the response mechanism of anammox consortia to temperature[J]. Microbiology China, 2019, 46(8):1936-1945. doi: 10.13344/j.microbiol.china.190322
|
28 |
LIN Ximao, WANG Yayi, MA Xiao,et al .Evidence of differential adaptation to decreased temperature by anammox bacteria[J]. Environmental Microbiology, 2018, 20(10):3514-3528. doi: 10.1111/1462-2920.14306
|
29 |
RATTRAY J E, VAN DE VOSSENBERG J, JAESCHKE A,et al .Impact of temperature on ladderane lipid distribution in anammox bacteria[J]. Applied and Environmental Microbiology, 2010, 76(5):1596-1603. doi: 10.1128/aem.01796-09
|
30 |
HUO Tangran, ZHAO Yunpeng, TANG Xi,et al. Metabolic acclimation of anammox consortia to decreased temperature[J]. Environment International, 2020, 143:105915. doi: 10.1016/j.envint.2020.105915
|
31 |
LILJEQVIST M, OSSANDON F J, GONZÁLEZ C,et al. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream[J]. FEMS Microbiology Ecology, 2015, 91(4):fiv011. doi: 10.1093/femsec/fiv011
|
32 |
WANG Rui, LIU Jinjin, ZHANG Qiong,et al. Robustness of the anammox process at low temperatures and low dissolved oxygen for low C/N municipal wastewater treatment[J]. Water Research, 2024, 252:121209. doi: 10.1016/j.watres.2024.121209
|
33 |
LI Linjing, XU Wenlai, NING Jianyong,et al. Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(Ⅱ) at low temperature[J]. Chinese Chemical Letters, 2024, 35(8):109243. doi: 10.1016/j.cclet.2023.109243
|
34 |
STROUS M, VAN GERVEN E, KUENEN J G,et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6):2446-2448. doi: 10.1128/aem.63.6.2446-2448.1997
|
35 |
YAN Yuan, WANG Weigang, WU Mengxiong,et al. Transcriptomics uncovers the response of anammox bacteria to dissolved oxygen inhibition and the subsequent recovery mechanism[J]. Environmental Science & Technology, 2020, 54(22):14674-14685. doi: 10.1021/acs.est.0c02842
|
36 |
KAMARTHAPU V, EPSHTEIN V, BENJAMIN B,et al. ppGpp couples transcription to DNA repair in E.coli [J]. Science, 2016, 352(6288):993-996. doi: 10.1126/science.aad6945
|
37 |
OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9):2784-2796. doi: 10.1111/1462-2920.13134
|
38 |
YANG Yuchun, LU Zhongyi, AZARI M,et al. Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance[J]. Water Research, 2022, 226:119165. doi: 10.1016/j.watres.2022.119165
|
39 |
LAWSON C E, WU Sha, BHATTACHARJEE A S,et al .Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 2017, 8:15416. doi: 10.1038/ncomms15416
|
40 |
张姚,韩海成,王伟刚,等. 溶解氧对CANON颗粒污泥自养脱氮性能的影响[J]. 中国环境科学,2017,37(12):4501-4510.
|
|
ZHANG Yao, HAN Haicheng, WANG Weigang,et al. Impact of dissolved oxygen on autotrophic nitrogen removals of the granular sludge in a CANON process[J]. China Environmental Science,2017,37(12):4501-4510.
|
41 |
MALOVANYY A, TRELA J, PLAZA E. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process[J]. Bioresource Technology, 2015, 198:478-487. doi: 10.1016/j.biortech.2015.08.123
|
42 |
ZHANG Qionghua, YANG W N, NGO H H,et al. Current status of urban wastewater treatment plants in China[J]. Environment International, 2016, 92:11-22. doi: 10.1016/j.envint.2016.03.024
|
43 |
GUO Menglei, JIANG Ying, XIE Junxiang,et al. Bamboo charcoal addition enhanced the nitrogen removal of anammox granular sludge with COD:Performance,physicochemical characteristics and microbial community[J]. Journal of Environmental Sciences, 2022, 115:55-64. doi: 10.1016/j.jes.2021.07.010
|
44 |
XIAO Rui, NI Bingjie, LIU Sitong,et al. Impacts of organics on the microbial ecology of wastewater anammox processes:Recent advances and meta-analysis[J]. Water Research, 2021, 191:116817. doi: 10.1016/j.watres.2021.116817
|
45 |
CHEN Chongjun, JIANG Ying, LIU Jingjing,et al. The structure of anammox granular sludge under varying long-term organic matter stress:Performance,physiochemical and microbial community[J]. Journal of Cleaner Production, 2021, 323:129117. doi: 10.1016/j.jclepro.2021.129117
|
46 |
METZ B, KERSTEN G F A, HOOGERHOUT P,et al. Identification of formaldehyde-induced modifications in proteins reactions with model peptides[J]. Journal of Biological Chemistry, 2004, 279(8):6235-6243. doi: 10.1074/jbc.m310752200
|
47 |
Liting LÜ, ZHANG Kuo, LI Zijun,et al. Inhibition of anammox activity by phenol:Suppression effect,community analysis and mechanism simulation[J]. International Biodeterioration & Biodegradation, 2019, 141:30-38. doi: 10.1016/j.ibiod.2018.07.001
|
48 |
FENG Haiwei, SUN Yujing, ZHI Yuee,et al. Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1[J]. Microbial Cell Factories, 2014, 13(1):174. doi: 10.1186/preaccept-1028477157140427
|
49 |
TAO Yu, HUANG Xiaoli, GAO Dawen,et al. NanoSIMS reveals unusual enrichment of acetate and propionate by an anammox consortium dominated by Jettenia asiatica [J]. Water Research, 2019, 159:223-232. doi: 10.1016/j.watres.2019.05.006
|
50 |
JIA Fangxu, YANG Qing, LIU Xiuhong,et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6):3260-3268. doi: 10.1021/acs.est.6b05761
|
51 |
ZHAO Yunpeng, LIU Shufeng, JIANG Bo,et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia[J]. Environmental Science & Technology,2018,52(19):11285-11296.
|
52 |
XU Dongdong, KANG Da, YU Tao,et al. A secret of high-rate mass transfer in anammox granular sludge:“lung-like breathing”[J]. Water Research, 2019, 154:189-198. doi: 10.1016/j.watres.2019.01.039
|
53 |
TANG Chongjian, ZHENG Ping, WANG Caihua,et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1):135-144. doi: 10.1016/j.watres.2010.08.018
|
54 |
CHEN Hui, MA Chun, YANG Guangfeng,et al. Floatation of flocculent and granular sludge in a high-loaded anammox reactor[J]. Bioresource Technology, 2014, 169:409-415. doi: 10.1016/j.biortech.2014.06.063
|
55 |
SOH Y N A, KUNACHEVA C, WEBSTER R D,et al. Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes:A short review[J]. Chemosphere, 2020, 251:126391. doi: 10.1016/j.chemosphere.2020.126391
|
56 |
WU Dan, LI Guifeng, SHI Zhijian,et al. Co-inhibition of salinity and Ni(Ⅱ) in the anammox-UASB reactor[J]. Science of the Total Environment, 2019, 669:70-82. doi: 10.1016/j.scitotenv.2019.03.130
|
57 |
MOJIRI A, NISHIMOTO K, AWATA T,et al. Effects of salts on the activity and growth of “ Candidatus scalindua sp.”,a marine anammox bacterium[J]. Microbes and Environments, 2018, 33(3):336-339. doi: 10.1264/jsme2.me18068
|
58 |
LIN Limin, PRATT S, CRICK O,et al. Salinity effect on freshwater anammox bacteria:Ionic stress and ion composition[J]. Water Research, 2021, 188:116432. doi: 10.1016/j.watres.2020.116432
|
59 |
DSANE V F, AN Sumin, SHAHID M K,et al. From freshwater anammox bacteria (FAB) to marine anammox bacteria (MAB):A stepwise salinity acclimation process[J]. Science of the Total Environment, 2021, 796:148753. doi: 10.1016/j.scitotenv.2021.148753
|
60 |
LI Jin, QI Panqing, QIANG Zhimin,et al. Is anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater?[J]. Bioresource Technology, 2018, 270:722-731. doi: 10.1016/j.biortech.2018.08.115
|
61 |
LIN Limin, PRATT S, LI Zhiheng,et al. Adaptation and evolution of freshwater Anammox communities treating saline/brackish wastewater[J]. Water Research, 2021, 207:117815. doi: 10.1016/j.watres.2021.117815
|
62 |
李旖瑜. 厌氧氨氧化深度脱氮工艺及其微生物学机理[D]. 杭州:浙江大学,2021.
|
|
LI Qiyu. ANAMMOX-based nitrogen polishing process and its microbiological mechanism[D]. Hangzhou:Zhejiang University,2021.
|
63 |
YOUSSEF N H, SAVAGE-ASHLOCK K N, MCCULLY A L,et al. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales[J]. The ISME Journal, 2014, 8(3):636-649. doi: 10.1038/ismej.2013.165
|
64 |
SPETH D R, LAGKOUVARDOS I, WANG Yong,et al. Draft genome of scalindua rubra,obtained from the interface above the discovery deep brine in the red sea,sheds light on potential salt adaptation strategies in anammox bacteria[J]. Microbial Ecology, 2017, 74(1):1-5. doi: 10.1007/s00248-017-0929-7
|
65 |
FU Jinjin, WANG Ye, YANG Junhui,et al. Mitigating the detrimental effects of salt stress on anammox process:A comparison between glycine betaine and mannitol[J]. Science of the Total Environment, 2022, 851:158221. doi: 10.1016/j.scitotenv.2022.158221
|
66 |
WANG Zhongwei, VAN LOOSDRECHT M C M, SAIKALY P E .Gradual adaptation to salt and dissolved oxygen:Strategies to minimize adverse effect of salinity on aerobic granular sludge[J]. Water Research, 2017, 124:702-712. doi: 10.1016/j.watres.2017.08.026
|
67 |
LI Guifeng, MA Wenjie, CHENG Yafei,et al. A spectra metrology insight into the binding characteristics of Cu 2+ onto anammox extracellular polymeric substances[J]. Chemical Engineering Journal, 2020, 393:124800. doi: 10.1016/j.cej.2020.124800
|
68 |
HUANG Dongqi, FU Jinjin, LI Ziyue,et al. Inhibition of wastewater pollutants on the anammox process:A review[J]. Science of the Total Environment, 2022, 803:150009. doi: 10.1016/j.scitotenv.2021.150009
|
69 |
YU Hanqing. Molecular insights into extracellular polymeric substances in activated sludge[J]. Environmental Science & Technology, 2020, 54(13):7742-7750. doi: 10.1021/acs.est.0c00850
|
70 |
SANI R K, PEYTON B M, BROWN L T. Copper-induced inhibition of growth of desulfovibrio desulfuricans G20:Assessment of its toxicity and correlation with those of zinc and lead[J]. Applied and Environmental Microbiology, 2001, 67(10):4765-4772. doi: 10.1128/aem.67.10.4765-4772.2001
|
71 |
SARI T,CAN S, AKGUL D. Assessment of Anammox process against acute and long-term exposure of ZnO nanoparticles[J]. Science of the Total Environment, 2020, 727:138603. doi: 10.1016/j.scitotenv.2020.138603
|
72 |
ZHOU Shuai, ZHU Yijing, YAN Yuan,et al. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome[J]. Water Research, 2019, 161:610-620. doi: 10.1016/j.watres.2019.06.048
|
73 |
ZHANG Zhengzhe, CHENG Yafei, ZHOU Yuhuang,et al. A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(Ⅱ):EDTA washing combined with biostimulation via low-intensity ultrasound[J]. Chemical Engineering Journal, 2015, 279:912-920. doi: 10.1016/j.cej.2015.05.081
|
74 |
MA Xiao, YAN Yuan, WANG Weigang,et al. Metatranscriptomic analysis of adaptive response of anammox bacteria Candidatus ‘Kuenenia stuttgartiensis’ to Zn(Ⅱ) exposure[J]. Chemosphere, 2020, 246:125682. doi: 10.1016/j.chemosphere.2019.125682
|
75 |
YANG Guangfeng, NI Weimin, WU Kai,et al. The effect of Cu(Ⅱ) stress on the activity,performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process[J]. Chemical Engineering Journal, 2013, 226:39-45. doi: 10.1016/j.cej.2013.04.019
|
76 |
ZHANG Xiaojing, CHEN Zhao, MA Yongpeng,et al. Acute and persistent toxicity of Cd(Ⅱ) to the microbial community of Anammox process[J]. Bioresource Technology, 2018, 261:453-457. doi: 10.1016/j.biortech.2018.04.055
|
77 |
GUTWIŃSKI P, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A,et al .Long-term effect of heavy metals Cr(Ⅲ),Zn(Ⅱ),Cd(Ⅱ),Cu(Ⅱ),Ni(Ⅱ),Pb(Ⅱ) on the anammox process performance[J]. Journal of Water Process Engineering, 2021, 39:101668. doi: 10.1016/j.jwpe.2020.101668
|
78 |
ZHANG Qian, CHENG Yafei, HUANG Baocheng,et al. A review of heavy metals inhibitory effects in the process of anaerobic ammonium oxidation[J]. Journal of Hazardous Materials, 2022, 429:128362. doi: 10.1016/j.jhazmat.2022.128362
|
79 |
CHEN Zhao, ZHANG Xiaojing, MA Yongpeng,et al. Anammox biofilm system under the stress of Hg(Ⅱ):Nitrogen removal performance,microbial community dynamic and resistance genes expression [J]. Journal of Hazardous Materials, 2020, 395:122665. doi: 10.1016/j.jhazmat.2020.122665
|
80 |
YU Cheng, SONG Yuxia, CHAI Liyuan,et al. Comparative evaluation of short-term stress of Cd(Ⅱ),Hg(Ⅱ),Pb(Ⅱ),As(Ⅲ) and Cr(Ⅵ) on anammox granules by batch test [J]. Journal of Bioscience and Bioengineering, 2016, 122(6):722-729. doi: 10.1016/j.jbiosc.2016.06.008
|
81 |
MIAO Yu, LIAO Runhua, ZHANG Xuxiang,et al. Metagenomic insights into Cr(Ⅵ) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater [J]. Water Research, 2015, 76:43-52. doi: 10.1016/j.watres.2015.02.042
|
82 |
ZHU Jiaxuan, LI Tian, LIAO Chengmei,et al. A promising destiny for Feammox:From biogeochemical ammonium oxidation to wastewater treatment [J]. Science of the Total Environment, 2021, 790:148038. doi: 10.1016/j.scitotenv.2021.148038
|
83 |
WU Yichen, ZHAO Yingxin, LIU Yinuo,et al. Insights into heavy metals shock on anammox systems:Cell structure-based mechanisms and new challenges [J]. Water Research, 2023, 239:120031. doi: 10.1016/j.watres.2023.120031
|
84 |
YU Cheng, SONG Yuxia, CHAI Liyuan,et al. Comparative evaluation of short-term stress of Cd(Ⅱ),Hg(Ⅱ),Pb(Ⅱ),As(Ⅲ) and Cr(Ⅵ) on anammox granules by batch test [J]. Journal of Bioscience and Bioengineering, 2016, 122(6):722-729. doi: 10.1016/j.jbiosc.2016.06.008
|
85 |
WANG Ye, HUANG Dongqi, YANG Junhui,et al. Polyamide microplastics act as carriers for cephalexin in the anammox process [J]. Chemical Engineering Journal, 2023, 451:138685. doi: 10.1016/j.cej.2022.138685
|