1 |
NEWHART K B, HOLLOWAY R W, HERING A S,et al. Data-driven performance analyses of wastewater treatment plants:A review[J]. Water Research, 2019, 157:498-513. doi: 10.1016/j.watres.2019.03.030
|
2 |
陈能汪,余镒琦,陈纪新,等. 人工神经网络模型在水质预警中的应用研究进展[J]. 环境科学学报,2021,41(12):4771-4782.
|
|
CHEN Nengwang, YU Yiqi, CHEN Jixin,et al. Artificial neural network models for water quality early warning:A review[J]. Acta Scientiae Circumstantiae,2021,41(12):4771-4782.
|
3 |
汪锐,余雅丹,潘志成,等. 模拟预测模型在污水处理中的应用:现状与挑战[J]. 水处理技术,2022,48(6):20-23.
|
|
WANG Rui, YU Yadan, PAN Zhicheng,et al. Application of simulated predictive models to wastewater treatment:Status and challenges[J]. Technology of Water Treatment,2022,48(6):20-23.
|
4 |
MAIER H R, GALELLI S, RAZAVI S,et al. Exploding the myths:An introduction to artificial neural networks for prediction and forecasting[J]. Environmental Modelling & Software, 2023, 167:105776. doi: 10.1016/j.envsoft.2023.105776
|
5 |
ZHU Junjie, YANG Meiqi, REN Z J. Machine learning in environmental research:Common pitfalls and best practices[J]. Environmental Science & Technology, 2023, 57(46):17671-17689. doi: 10.1021/acs.est.3c00026
|
6 |
SAFEER S, PANDEY R P, REHMAN B,et al. A review of artificial intelligence in water purification and wastewater treatment:Recent advancements[J]. Journal of Water Process Engineering, 2022, 49:102974. doi: 10.1016/j.jwpe.2022.102974
|
7 |
ALVI M, BATSTONE D, MBAMBA C K,et al. Deep learning in wastewater treatment:A critical review[J]. Water Research, 2023, 245:120518. doi: 10.1016/j.watres.2023.120518
|
8 |
EL-RAWY M, ABD-ELLAH M K, FATHI H,et al. Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques[J]. Journal of Water Process Engineering, 2021, 44:102380. doi: 10.1016/j.jwpe.2021.102380
|
9 |
|
|
CHEN Lin, YAN Xin, TANG Zhihe,et al. Water quality prediction model for the flotation unit of a refinery wastewater treatment system based on an optimized support vector regression machine[J]. Industrial Water Treatment, 2024.DOI: 10.19965/j.cnki.iwt.2024-0325 .
|
10 |
HUANG Ruixing, MA Chengxue, MA Jun,et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666. doi: 10.1016/j.watres.2021.117666
|
11 |
|
|
NIU Jinghui. Key data prediction algorithm for industrial wastewater quality based on GWO-XGBoost [J]. Industrial Water Treatment, 2024, 44(1): 184-190. doi: 10.19965/j.cnki.iwt.2022-1291
|
12 |
皇甫小留,王晶瑞,龙鑫隆,等. 机器学习在水处理系统中的应用[J]. 给水排水,2022,58(11):153-165.
|
|
HUANGFU Xiaoliu, WANG Jingrui, LONG Xinlong,et al. Application of machine learning in water treatment system[J]. Water & Wastewater Engineering,2022,58(11):153-165.
|
13 |
WANG Rui, YU Yadan, CHEN Yangwu,et al. Model construction and application for effluent prediction in wastewater treatment plant:Data processing method optimization and process parameters integration[J]. Journal of Environmental Management, 2022, 302:114020. doi: 10.1016/j.jenvman.2021.114020
|
14 |
LI Dong, YANG Chunhua, LI Yonggang,et al. A deep semi-supervised learning framework towards multi-output soft sensors development and applications in wastewater treatment processes[J]. Journal of Water Process Engineering, 2024, 57:104654. doi: 10.1016/j.jwpe.2023.104654
|
15 |
Jiaqiang LÜ, DU Lili, LIN Hongyong,et al. Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning[J]. Bioresource Technology, 2024, 393:130008. doi: 10.1016/j.biortech.2023.130008
|
16 |
XU Boyan, POOI C K, TAN K M,et al. A novel long short-term memory artificial neural network(LSTM)-based soft-sensor to monitor and forecast wastewater treatment performance[J]. Journal of Water Process Engineering, 2023, 54:104041. doi: 10.1016/j.jwpe.2023.104041
|
17 |
HAMADA M S, ZAQOOT H A, SETHAR W A. Using a supervised machine learning approach to predict water quality at the Gaza wastewater treatment plant[J]. Environmental Science:Advances, 2024, 3(1):132-144. doi: 10.1039/d3va00170a
|
18 |
GHOLIZADEH M, SAEEDI R, BAGHERI A,et al. Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches:A comparative study[J]. Environmental Research, 2024, 246:118146. doi: 10.1016/j.envres.2024.118146
|
19 |
CECHINEL M A P, NEVES J, FUCK J V R,et al. Enhancing wastewater treatment efficiency through machine learning-driven effluent quality prediction:A plant-level analysis[J]. Journal of Water Process Engineering, 2024, 58:104758. doi: 10.1016/j.jwpe.2023.104758
|
20 |
ABOUZARI M, PAHLAVANI P, IZADITAME F,et al. Estimating the chemical oxygen demand of petrochemical wastewater treatment plants using linear and nonlinear statistical models:A case study[J]. Chemosphere, 2021, 270:129465. doi: 10.1016/j.chemosphere.2020.129465
|
21 |
NOURANI V, ZONOUZ R S, DINI M. Estimation of prediction intervals for uncertainty assessment of artificial neural network based wastewater treatment plant effluent modeling[J]. Journal of Water Process Engineering, 2023, 55:104145. doi: 10.1016/j.jwpe.2023.104145
|
22 |
BAGHER-ZADEH F, MEHRANI M J, BASIRIFARD M,et al. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance[J]. Journal of Water Process Engineering, 2021, 41:102033. doi: 10.1016/j.jwpe.2021.102033
|
23 |
HUANG Shunbo, WANG Rui, YU Yadan,et al. Construction and application of effluent quality prediction model with insufficient data based on transfer learning algorithm in wastewater treatment plants[J]. Biochemical Engineering Journal, 2023, 191:108807. doi: 10.1016/j.bej.2023.108807
|
24 |
XIE Yifan, CHEN Yongqi, WEI Qing,et al. A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant[J]. Water Research, 2024, 250:121092. doi: 10.1016/j.watres.2023.121092
|
25 |
LI Dong, YANG Chunhua, LI Yonggang. A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes[J]. Water Research, 2024, 254:121347. doi: 10.1016/j.watres.2024.121347
|
26 |
XIONG Jinlin, TAO Zihan, HUA Lei,et al. An evolutionary robust soft measurement technique via enhanced atom search optimization and outlier robust extreme learning machine for wastewater treatment process[J]. Journal of Water Process Engineering, 2023, 55:104102. doi: 10.1016/j.jwpe.2023.104102
|
27 |
LI Kang, YANG Cuili, WANG Wei,et al. An improved stochastic configuration network for concentration prediction in wastewater treatment process[J]. Information Sciences, 2023, 622:148-160. doi: 10.1016/j.ins.2022.11.134
|
28 |
|
|
QIU Yu. Research and application of soft sensor modeling for sewage treatment[D]. Guangzhou:South China University of Technology, 2018. doi: 10.11949/j.issn.0438-1157.20171624
|
29 |
袁凌玲. 面向污水处理过程的软测量若干关键技术研究[D]. 广州:华南理工大学,2021.
|
|
YUAN Lingling. Research on some key technologies of soft sensing for sewage treatment process[D]. Guangzhou:South China University of Technology,2021.
|
30 |
陈威,陈会娟,戴凡翔,等. 基于人工神经网络的污水处理出水水质预测模型[J]. 给水排水,2020,56():990-994.
|
|
CHEN Wei, CHEN Huijuan, DAI Fanxiang,et al. Prediction model of effluent quality of sewage treatment based on artificial neural network[J]. Water & Wastewater Engineering,2020,56(S1):990-994.
|
31 |
RIOS FUCK J V, CECHINEL M A P, NEVES J,et al. Predicting effluent quality parameters for wastewater treatment plant:A machine learning-based methodology[J]. Chemosphere, 2024, 352:141472. doi: 10.1016/j.chemosphere.2024.141472
|
32 |
崔海,余鑫磊,庞继伟,等. 采用BP-ANN和改进SVR的进水BOD软测量模型[J]. 哈尔滨工业大学学报, 2022, 54(2):59-66. doi: 10.11918/202111051
|
|
CUI Hai, YU Xinlei, PANG Jiwei,et al. Influent BOD soft sensing models based on BP-ANN and improved SVR[J]. Journal of Harbin Institute of Technology, 2022, 54(2):59-66. doi: 10.11918/202111051
|
33 |
|
|
HUANG Qilan, FAN Jinxiang. Soft measurement modeling of wastewater COD based on improved particle swarm optimization LSSVM[J]. Journal of Tiangong University, 2021, 40(1):74-80. doi: 10.3969/j.issn.1671-024x.2021.01.013
|
34 |
|
|
GUO Lijin, LI Bolun. Research on soft measurement of effluent total nitrogen based on GNFA-SVR[J]. Industrial Water Treatment, 2022, 42(10):111-117. doi: 10.19965/j.cnki.iwt.2021-1250
|
35 |
权利敏. 数据驱动的城市污水处理过程智能控制方法研究[D]. 北京:北京工业大学,2021.
|
|
QUAN Limin. Research on data-driven intelligent control method for urban sewage treatment process[D]. Beijing:Beijing University of Technology,2021.
|
36 |
蒙西,张寅,乔俊飞. 基于动态模糊神经网络的出水含氮参数软测量方法[J]. 控制理论与应用,2023(11):1-9.
|
|
MENG Xi, ZHANG Yin, QIAO Junfei. Soft measurement method for effluent nitrogen parameters based on dynamic fuzzy neural networks[J]. Control Theory and Applications,2023(11):1-9.
|
37 |
杨文琚,孙晨暄,伍小龙. 基于敏感性分析的区间二型模糊神经网络出水总氮软测量[J]. 水利水电技术(中英文),2023,54(4):120-130.
|
|
YANG Wenju, SUN Chenxuan, WU Xiaolong. Soft-sensor method for effluent total nitrogen based on sensitivity analysis-interval type-2 fuzzy neural network[J]. Water Resources and Hydropower Engineering,2023,54(4):120-130.
|
38 |
张伟,张春辉. 基于DAK-FNN的出水氨氮软测量建模方法[J]. 河南理工大学学报(自然科学版),2023,42(2):134-143.
|
|
ZHANG Wei, ZHANG Chunhui. Soft measurement based on DAK-FNN for effluent ammonia nitrogen[J]. Journal of Henan Polytechnic University(Natural Science),2023,42(2):134-143.
|
39 |
ZHANG Yinan, WU Haizhen, XU Rui,et al. Machine learning modeling for the prediction of phosphorus and nitrogen removal efficiency and screening of crucial microorganisms in wastewater treatment plants[J]. Science of the Total Environment, 2024, 907:167730. doi: 10.1016/j.scitotenv.2023.167730
|
40 |
ZHOU Meng, ZHANG Yinyue, WANG Jing,et al. LSTM-OBE based interval prediction of effluent BOD for wastewater treatment[J]. IFAC-PapersOnLine, 2023, 56(2):8488-8493. doi: 10.1016/j.ifacol.2023.10.1137
|
41 |
MOHAMMADI E, STOKHOLM-BJERREGAARD M, HANSEN A A,et al. Deep learning based simulators for the phosphorus removal process control in wastewater treatment via deep reinforcement learning algorithms[J]. Engineering Applications of Artificial Intelligence, 2024, 133:107992. doi: 10.1016/j.engappai.2024.107992
|
42 |
XIE Yifan, CHEN Yongqi, LIAN Qing,et al. Enhancing real-time prediction of effluent water quality of wastewater treatment plant based on improved feedforward neural network coupled with optimization algorithm[J]. Water, 2022, 14(7):1053. doi: 10.3390/w14071053
|
43 |
KAZOR K, HOLLOWAY R W, CATH T Y,et al. Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(5):1527-1544. doi: 10.1007/s00477-016-1246-2
|
44 |
WANG Zifei, MAN Yi, HU Yusha,et al. A deep learning based dynamic COD prediction model for urban sewage[J]. Environmental Science:Water Research & Technology, 2019, 5(12):2210-2218. doi: 10.1039/c9ew00505f
|
45 |
YANG Yongkui, KIM K R, KOU Rongrong,et al. Prediction of effluent quality in a wastewater treatment plant by dynamic neural network modeling[J]. Process Safety and Environmental Protection, 2022, 158:515-524. doi: 10.1016/j.psep.2021.12.034
|
46 |
CHENG Tuoyuan, HARROU F, KADRI F,et al. Forecasting of wastewater treatment plant key features using deep learning-based models:A case study[J]. IEEE Access, 2020, 8:184475-184485. doi: 10.1109/access.2020.3030820
|
47 |
KANG H, YANG S, HUANG J,et al. Time series prediction of wastewater flow rate by bidirectional lstm deep learning[J]. International Journal of Control Automation and Systems, 2020, 18(12):3023-3030. doi: 10.1007/s12555-019-0984-6
|
48 |
|
|
REN Anqi, LIU Lin, WANG Hailong,et al. A review of research on text entity relationship extraction[J]. Journal of Frontiers of Computer Science & Technology, 2024. DOI: 10.3778/j.issn.1673-9418.2401033 .
|