1 |
SONAWANE J M, EZUGWU C I, GHOSH P C. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater:State-of-the-art and practical applications[J]. ACS Sensors, 2020, 5(8):2297-2316. doi: 10.1021/acssensors.0c01299
|
2 |
|
|
WANG Jianlong, ZHANG Yixin. Research advances in biosensor for rapid measurement of biochemical oxygen demand(BOD)[J]. Acta Scientiae Circumstantiae, 2007, 27(7):1066-1082. doi: 10.3321/j.issn:0253-2468.2007.07.002
|
3 |
|
|
CUI Jiansheng, ZHANG Jing, WEI Fusheng. Development in biochemical oxygen demand determination[J]. Environmental Monitoring in China, 2006, 22(3):85-87. doi: 10.3969/j.issn.1002-6002.2006.03.027
|
4 |
|
|
LI Guogang, WANG Delong. Review on determination methods of biological oxygen demand(BOD)[J]. Environmental Monitoring in China, 2004, 20(2):54-57. doi: 10.3969/j.issn.1002-6002.2004.02.020
|
5 |
RATHEESH A, ELIAS L, ABOOBAKAR SHIBLI S M. Tuning of electrode surface for enhanced bacterial adhesion and reactions:A review on recent approaches[J]. ACS Applied Bio Materials, 2021, 4(8):5809-5838. doi: 10.1021/acsabm.1c00362
|
6 |
|
|
|
7 |
|
|
YE Yucai, WANG Jianlong, PU Lifeng. Biosensors for rapid estimation of biochemical oxygen demand[J]. Chinese Journal of Analytical Chemistry, 2005, 33(3):405-410. doi: 10.3321/j.issn:0253-3820.2005.03.029
|
8 |
RAUD M, TENNO T, JÕGI E,et al. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters[J]. Enzyme and Microbial Technology, 2012, 50(4/5):221-226. doi: 10.1016/j.enzmictec.2012.01.003
|
9 |
张静,吕雪飞,邓玉林. 基因工程微生物传感器及其应用研究进展[J]. 生命科学仪器,2019,17(1):11-16.
|
|
ZHANG Jing, Xuefei LÜ, DENG Yulin. Application research of genetically engineered microbial biosensors[J]. Life Science Instruments,2019,17(1):11-16.
|
10 |
张鹏. 电化学活性微生物胞外电子传递过程的强化及机制研究[D]. 哈尔滨:哈尔滨工业大学,2018.
|
|
ZHANG Peng. Enhanced microbial extracellular electron transfer process of electrochemical active bacteria and mechanism analysis[D]. Harbin:Harbin Institute of Technology,2018.
|
11 |
COMMAULT A S, LEAR G, BOUVIER S,et al. Geobacter-dominated biofilms used as amperometric BOD sensors[J]. Biochemical Engineering Journal, 2016, 109:88-95. doi: 10.1016/j.bej.2016.01.011
|
12 |
SPURR M W A, YU E H, SCOTT K,et al. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells[J]. Environmental Science:Water Research & Technology, 2018, 4(12):2029-2040. doi: 10.1039/c8ew00497h
|
13 |
HSIEH M C, CHUNG Y C. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor[J]. Environmental Technology, 2014, 35(17):2204-2211. doi: 10.1080/09593330.2014.898700
|
14 |
DO M H, NGO H H, GUO Wenshan,et al. Performance of mediator-less double chamber microbial fuel cell-based biosensor for measuring biological chemical oxygen[J]. Journal of Environmental Management, 2020, 276:111279. doi: 10.1016/j.jenvman.2020.111279
|
15 |
LIU Bingchuan, LEI Yu, LI Baikun. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring[J]. Biosensors and Bioelectronics, 2014, 62:308-314. doi: 10.1016/j.bios.2014.06.051
|
16 |
LOGROÑO W, GUAMBO A, PÉREZ M,et al. A terrestrial single chamber microbial fuel cell-based biosensor for biochemical oxygen demand of synthetic rice washed wastewater[J]. Sensors, 2016, 16(1):101. doi: 10.3390/s16010101
|
17 |
XU Zhiheng, LIU Bingchuan, DONG Qiuchen,et al. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks[J]. Bioresource Technology, 2015, 197:244-251. doi: 10.1016/j.biortech.2015.08.081
|
18 |
GAO Yangyang, YIN Fengjun, MA Weiqi,et al. Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor:Method of partial coulombic yield[J]. Bioelectrochemistry, 2020, 133:107488. doi: 10.1016/j.bioelechem.2020.107488
|
19 |
KIM M N, PARK K H. Immobilization of enzymes for Klebsiella BOD sensor[J]. Sensors and Actuators B:Chemical, 2004, 98(1):1-4. doi: 10.1016/j.snb.2003.07.001
|
20 |
温广明. Clark氧电极生物传感器的研究及分析应用[D]. 太原:山西大学,2008.
|
|
WEN Guangming. Research and application of biosensor based on Clark oxygen electrode[D]. Taiyuan:Shanxi University,2008.
|
21 |
范振英. Clark氧电极工作原理研究[C]//天津市生物医学工程学会第29届学术年会暨首届生物医学工程前沿科学研讨会论文集. 天津:天津市生物医学工程学会,2009:84.
|
|
FAN Zhenying. Study on working principle of Clark oxygen electrode[C]//Proceedings of the 29th Annual Conference of Tianjin Biomedical Engineering Society and the First Frontier Science Symposium of Biomedical Engineering. Tianjin:Tianjin Biomedical Engineering Society,2009:84.
|
22 |
李一锦,夏善红. BOD微生物传感器关键技术及其发展[J]. 传感器与微系统,2015,34(7):5-10.
|
|
LI Yijin, XIA Shanhong. Key techniques of BOD microbial sensor and its development[J]. Transducer and Microsystem Technologies,2015,34(7):5-10.
|
23 |
|
|
HU Lei, LI Yi. Rapid determination of biochemical oxygen demand(BOD) in wastewater with ferrocene(Fc) grafted mediator microbial sensor[J]. Water Purification Technology, 2012, 31(3):49-53. doi: 10.3969/j.issn.1009-0177.2012.03.012
|
24 |
HU Jingfang, LI Yueqi, GAO Guowei,et al. A mediated BOD biosensor based on immobilized B.subtilis on three-dimensional porous graphene-polypyrrole composite[J]. Sensors, 2017, 17(11):2594. doi: 10.3390/s17112594
|
25 |
CHEN Dandan, CAO Yibin, LIU Baohong,et al. A BOD biosensor based on a microorganism immobilized on an Al 2O 3 sol-gel matrix[J]. Analytical and Bioanalytical Chemistry, 2002, 372(5/6):737-739. doi: 10.1007/s00216-001-1214-6
|
26 |
LI Yourong, CHU Ju. Study of BOD microbial sensors for waste water treatment control[J]. Applied Biochemistry and Biotechnology, 1991, 28(1):855-863. doi: 10.1007/bf02922655
|
27 |
KARA S, KESKINLER B, ERHAN E. A novel microbial BOD biosensor developed by the immobilization of P.syringae in micro-cellular polymers[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(4):511-518. doi: 10.1002/jctb.2071
|
28 |
CHEE G J, NOMURA Y, IKEBUKURO K,et al. Optical fiber biosensor for the determination of low biochemical oxygen demand[J]. Biosensors and Bioelectronics, 2000, 15(7/8):371-376. doi: 10.1016/s0956-5663(00)00093-2
|
29 |
TROSOK S P, DRISCOLL B T, LUONG J H. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement[J]. Applied Microbiology and Biotechnology, 2001, 56(3/4):550-554. doi: 10.1007/s002530100674
|
30 |
SAKAGUCHI T, KITAGAWA K, ANDO T,et al. A rapid BOD sensing system using luminescent recombinants of Escherichia coli [J]. Biosensors and Bioelectronics, 2003, 19(2):115-121. doi: 10.1016/s0956-5663(03)00170-2
|
31 |
LIN Ling, XIAO Lailong, HUANG Sha,et al. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix[J]. Biosensors and Bioelectronics, 2006, 21(9):1703-1709. doi: 10.1016/j.bios.2005.08.007
|
32 |
DAI Yuanjing, LIN Ling, LI Peiwei,et al. Comparison of BOD optical fiber biosensors based on different microorganisms immobilized in ormosil matrixes[J]. International Journal of Environmental Analytical Chemistry, 2004, 84(8):607-617. doi: 10.1080/03067310310001658302
|
33 |
YOSHIDA N, MCNIVEN S J, YOSHIDA A,et al. A compact optical system for multi-determination of biochemical oxygen demand using disposable strips[J]. Field Analytical Chemistry & Technology, 2001, 5(5):222-227. doi: 10.1002/fact.10001
|
34 |
SIMOSKA O, GAFFNEY E M, MINTEER S D,et al. Recent trends and advances in microbial electrochemical sensing technologies:An overview[J]. Current Opinion in Electrochemistry, 2021, 30:100762. doi: 10.1016/j.coelec.2021.100762
|
35 |
HU Jingfang, GAO Guowei, XIA Shanhong. Development of a mediator-type bioelectrochemical sensor based on polypyrrole immobilized ferricyanide and microorganisms for biochemical oxygen demand fast detection[J]. International Journal of Electrochemical Science,2015,10(11):9695-9705.
|
36 |
HU Jingfang, GAO Guowei, XIA Shanhong. A mediated BOD microsensor based on poly(neutral red) and bacteria modified interdigited ultramicroelectrode array[J]. International Journal of Electrochemical Science,2016,11(7):6387-6402.
|
37 |
YI Yue, XIE Beizhen, ZHAO Ting,et al. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism[J]. Bioresource Technology, 2018, 265:415-421. doi: 10.1016/j.biortech.2018.06.037
|
38 |
RASTOGI S, KUMAR A, MEHRA N K,et al. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters[J]. Biosensors and Bioelectronics, 2003, 18(1):23-29. doi: 10.1016/s0956-5663(02)00108-2
|
39 |
ARLYAPOV V A, YUDINA N Y, MACHULIN A V,et al. A biosensor on the basis of microorganisms immobilized in layer-by-layer films for determination of biochemical oxygen demand[J]. Applied Biochemistry and Microbiology, 2021, 57(1):95-104. doi: 10.1134/s0003683821010038
|
40 |
YI Yue, ZHAO Ting, XIE Beizhen,et al. Dual detection of biochemical oxygen demand and nitrate in water based on bidirectional Shewanella loihica electron transfer[J]. Bioresource Technology, 2020, 309:123402. doi: 10.1016/j.biortech.2020.123402
|
41 |
Huan LÜ, YANG Qian, CHEN Yiliang,et al. Determination of seawater biochemical oxygen demand based on in situ cultured biofilm reactor[J]. Journal of Electroanalytical Chemistry, 2021, 903:115872. doi: 10.1016/j.jelechem.2021.115872
|
42 |
YUAN Pengyi, KIM Y. Accurate and rapid organic detection by eliminating hysteresis in bioanode sensor applications[J]. Environmental Science:Water Research & Technology, 2017, 3(5):905-910. doi: 10.1039/c7ew00115k
|
43 |
DO M H, NGO H H, GUO Wenshan,et al. Performance of mediator-less double chamber microbial fuel cell-based biosensor for measuring biological chemical oxygen[J]. Journal of Environmental Management, 2020, 276:111279. doi: 10.1016/j.jenvman.2020.111279
|
44 |
田帅,张盼月,梁英梅,等. 双室微生物燃料电池型BOD传感器性能[J]. 环境工程学报,2014,8(6):2626-2632.
|
|
TIAN Shuai, ZHANG Panyue, LIANG Yingmei,et al. Performances of double-chamber microbial fuel cell-based BOD sensor[J]. Chinese Journal of Environmental Engineering,2014,8(6):2626-2632.
|
45 |
DI LORENZO M, CURTIS T P, HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J]. Water Research, 2009, 43(13):3145-3154. doi: 10.1016/j.watres.2009.01.005
|
46 |
|
|
WU Feng, LIU Zhi, ZHOU Shungui,et al. Development of a low-cost single chamber microbial fuel cell type BOD sensor[J]. Environmental Science, 2009, 30(10):3099-3103. doi: 10.3321/j.issn:0250-3301.2009.10.048
|
47 |
KARUBE I, MATSUNAGA T, MITSUDA S,et al. Microbial electrode BOD sensors(Reprinted from Biotechnology and Bioengineering,vol XIX,pg 1535-1547,1977)[J]. Biotechnology and Bioengineering, 2009, 102(3):660-672. doi: 10.1002/bit.22232
|
48 |
STIRLING J L, BENNETTO H P, DELANEY G M,et al. Microbial fuel cells[J]. Biochemical Society Transactions, 1983, 11(4):451-453. doi: 10.1042/bst0110451
|
49 |
田帅. 微生物燃料电池型BOD传感器研究[D]. 北京:北京林业大学,2013.
|
|
TIAN Shuai. Study on microbial fuel cell-based BOD biosensor[D]. Beijing:Beijing Forestry University,2013.
|
50 |
蒋海明,李潇萍,罗生军,等. 基于微生物燃料电池技术的生物传感器及其应用进展[J]. 中南大学学报:自然科学版,2010,41(6):2451-2458.
|
|
JIANG Haiming, LI Xiaoping, LUO Shengjun,et al. Biosensors based on microbial fuel cell technology and their application[J]. Journal of Central South University:Science and Technology,2010,41(6):2451-2458.
|
51 |
KIM H J, PARK H S, HYUN M S,et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens [J]. Enzyme and Microbial Technology, 2002, 30(2):145-152. doi: 10.1016/s0141-0229(01)00478-1
|
52 |
KANG K H, JANG J K, PHAM T H,et al. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor[J]. Biotechnology Letters, 2003, 25(16):1357-1361. doi: 10.1023/a:1024984521699
|
53 |
王梅玉. 基于活性炭空气阴极的MFC型低成本BOD传感器的研究[D]. 天津:天津大学,2016.
|
|
WANG Meiyu. Study on low cost BOD sensors basing on activated carbon-air cathode microbial fuel cell[D]. Tianjin:Tianjin University,2016.
|
54 |
蒋永. 基于微生物电化学技术的水质预警系统研究[D]. 北京:清华大学,2018.
|
|
JIANG Yong. Study on microbial electrochemical technology for water alert system[D]. Beijing:Tsinghua University,2018.
|
55 |
AYYARU S, DHARMALINGAM S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor[J]. Analytica Chimica Acta, 2014, 818:15-22. doi: 10.1016/j.aca.2014.01.059
|
56 |
MODIN O, WILÉN B M. A novel bioelectrochemical BOD sensor operating with voltage input[J]. Water Research, 2012, 46(18):6113-6120. doi: 10.1016/j.watres.2012.08.042
|
57 |
PEIXOTO L, MIN B, MARTINS G,et al. In situ microbial fuel cell-based biosensor for organic carbon[J]. Bioelectrochemistry, 2011, 81(2):99-103. doi: 10.1016/j.bioelechem.2011.02.002
|
58 |
FAN Yanzhen, HU Hongqiang, LIU Hong. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. Journal of Power Sources, 2007, 171(2):348-354. doi: 10.1016/j.jpowsour.2007.06.220
|
59 |
DI LORENZO M, CURTIS T P, HEAD I M,et al. A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater[J]. Water Science and Technology, 2009, 60(11):2879-2887. doi: 10.2166/wst.2009.699
|
60 |
TARDY G M, LÓRÁNT B, GYALAI-KORPOS M,et al. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics[J]. Biotechnology Letters, 2021, 43(2):445-454. doi: 10.1007/s10529-020-03050-5
|
61 |
MOON H, CHANG I S, KANG K H,et al. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand(BOD) sensor[J]. Biotechnology Letters, 2004, 26(22):1717-1721. doi: 10.1007/s10529-004-3743-5
|
62 |
TRONT J M, FORTNER J D, PLÖTZE M,et al. Microbial fuel cell biosensor for in situ assessment of microbial activity[J]. Biosensors and Bioelectronics, 2008, 24(4):586-590. doi: 10.1016/j.bios.2008.06.006
|
63 |
CHANG I S, MOON H, JANG J K,et al. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors[J]. Biosensors and Bioelectronics, 2005, 20(9):1856-1859. doi: 10.1016/j.bios.2004.06.003
|
64 |
SHEN Yujia, WANG Meng, CHANG I S,et al. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(Ⅱ)[J]. Bioresource Technology, 2013, 136:707-710. doi: 10.1016/j.biortech.2013.02.069
|
65 |
JIANG Yong, LIANG Peng, ZHANG Changyong,et al. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(Ⅱ) with the applying of flow-through electrodes and controlled anode potentials[J]. Bioresource Technology, 2015, 190:367-372. doi: 10.1016/j.biortech.2015.04.127
|
66 |
SPURR M W, YU E H, SCOTT K,et al. No re-calibration required? Stability of a bioelectrochemical sensor for biodegradable organic matter over 800 days[J]. Biosensors and Bioelectronics, 2021, 190:113392. doi: 10.1016/j.bios.2021.113392
|
67 |
CHENG Shaoan, LIU Hong, LOGAN B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science & Technology, 2006, 40(7):2426-2432. doi: 10.1021/es051652w
|
68 |
XIAO Nan, WANG Bing, HUANG J J. Hydrodynamic optimization for design and operating parameters of an innovative continuous-flow miniaturized MFC biosensor[J]. Chemical Engineering Science, 2021, 235:116505. doi: 10.1016/j.ces.2021.116505
|
69 |
ELMEKAWY A, HEGAB H M, DOMINGUEZ-BENETTON X,et al. Internal resistance of microfluidic microbial fuel cell:Challenges and potential opportunities[J]. Bioresource Technology, 2013, 142:672-682. doi: 10.1016/j.biortech.2013.05.061
|
70 |
XIAO Nan, WU Rong, HUANG J J,et al. Development of a xurographically fabricated miniaturized low-cost,high-performance microbial fuel cell and its application for sensing biological oxygen demand[J]. Sensors and Actuators B:Chemical, 2020, 304:127432. doi: 10.1016/j.snb.2019.127432
|
71 |
ABREVAYA X C, SACCO N J, BONETTO M C,et al. Analytical applications of microbial fuel cells. Part Ⅱ:Toxicity,microbial activity and quantification,single analyte detection and other uses[J]. Biosensors & Bioelectronics, 2015, 63:591-601. doi: 10.1016/j.bios.2014.04.053
|
72 |
QI Xiang, WANG Shuyi, LI Tian,et al. An electroactive biofilm-based biosensor for water safety:Pollutants detection and early-warning[J]. Biosensors and Bioelectronics, 2021, 173:112822. doi: 10.1016/j.bios.2020.112822
|
73 |
YANG Yang, YE Dingding, LI Jun,et al. Microfluidic microbial fuel cells:From membrane to membrane free[J]. Journal of Power Sources, 2016, 324:113-125. doi: 10.1016/j.jpowsour.2016.05.078
|
74 |
LEE H, YANG W, WEI X,et al. A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems(MEMS). Estoril:IEEE, 2015:573-576. doi: 10.1109/memsys.2015.7051020
|
75 |
AELTERMAN P, VERSICHELE M, MARZORATI M,et al. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes[J]. Bioresource Technology, 2008, 99(18):8895-8902. doi: 10.1016/j.biortech.2008.04.061
|
76 |
CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232. doi: 10.1038/nbt867
|
77 |
LOGAN B, CHENG Shaoan, WATSON V,et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346. doi: 10.1021/es062644y
|
78 |
RABAEY I, OSSIEUR W, VERHAEGE M,et al. Continuous microbial fuel cells convert carbohydrates to electricity[J]. Water Science and Technology, 2005, 52(1/2):515-523. doi: 10.2166/wst.2005.0561
|
79 |
NGOC L T B, TU T A, HIEN L T T,et al. Simple approach for the rapid estimation of BOD 5 in food processing wastewater[J]. Environmental Science and Pollution Research International, 2020, 27(16):20554-20564. doi: 10.1007/s11356-020-08703-6
|
80 |
PHAM T H, AELTERMAN P, VERSTRAETE W. Bioanode performance in bioelectrochemical systems:Recent improvements and prospects[J]. Trends in Biotechnology, 2009, 27(3):168-178. doi: 10.1016/j.tibtech.2008.11.005
|
81 |
PARK D H, ZEIKUS J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens [J]. Applied Microbiology and Biotechnology, 2002, 59(1):58-61. doi: 10.1007/s00253-002-0972-1
|
82 |
ROSENBAUM M, ZHAO Feng, SCHRÖDER U,et al. Interfacing electrocatalysis and biocatalysis with tungsten carbide:A high-performance,noble-metal-free microbial fuel cell[J]. Angewandte Chemie:International Edition, 2006, 45(40):6658-6661. doi: 10.1002/anie.200602021
|
83 |
ZHANG Tian, CUI Changzheng, CHEN Shengli,et al. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli [J]. Chemical Communications, 2006(21):2257-2259. doi: 10.1039/b600876c
|
84 |
CHENG Shaoan, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3):492-496. doi: 10.1016/j.elecom.2006.10.023
|
85 |
ZAWADZKI D, PĘDZIWIATR P, MICHALSKA K. A novel microbial fuel cell with exchangeable membrane:Application of additive manufacturing technology for device fabrication[J]. Acta Innovations, 2018(28):20-31. doi: 10.32933/actainnovations.28.3
|
86 |
FRAIWAN A, LEE H, CHOI S. A multianode paper-based microbial fuel cell:A potential power source for disposable biosensors[J]. IEEE Sensors Journal, 2014, 14(10):3385-3390. doi: 10.1109/jsen.2014.2332075
|
87 |
WARDMAN C D, NEVIN K P, LOVLEY D R. SMART(subsurface microbial activity in real time) technology for real-time monitoring of microbial metabolism in anaerobic soils and sediments[C]//Abstracts of the General Meeting of the American Society for Microbiology. Boston:114th General Meeting of the American-Society-for-Microbiology, 2014:404. doi: 10.3389/fmicb.2014.00621
|
88 |
|
|
ZHENG Jin’ge, NIU Shasha, WANG Pengpeng,et al. Summary of structure and functional characteristics of microbial fuel cell reactor[J]. Industrial Water Treatment, 2019, 39(7):4-9. doi: 10.11894/iwt.2018-0785
|