1 |
BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570-6631. doi: 10.1021/cr900136g
|
2 |
ZHOU Qi, GONG Wenqi, XIE Chuanxin,et al. Removal of Neutral Red from aqueous solution by adsorption on spent cottonseed hull substrate[J]. Journal of Hazardous Materials, 2011, 185(1):502-506. doi: 10.1016/j.jhazmat.2010.09.029
|
3 |
HAQUE M M, SMITH W T, WONG D K Y. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters[J]. Journal of Hazardous Materials, 2015, 283:164-170. doi: 10.1016/j.jhazmat.2014.07.038
|
4 |
FERNÁNDEZ-CASTRO P, VALLEJO M, ROMÁN M F SAN,et al. Insight on the fundamentals of advanced oxidation processes:Role and review of the determination methods of reactive oxygen species[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5):796-820. doi: 10.1002/jctb.4634
|
5 |
CHÁVEZ A M, GIMENO O,REY A,et al. Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs[J]. Chemical Engineering Journal, 2019, 361:89-98. doi: 10.1016/j.cej.2018.12.064
|
6 |
KLAUSON D, BABKINA J, STEPANOVA K,et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1/2):39-45. doi: 10.1016/j.cattod.2010.01.015
|
7 |
CIGGIN A S, OZCAN O O, GÖKCEKUS H,et al. Effect of Fenton oxidation on the toxicity of carpet manufacturing effluents[J]. Desalination and Water Treatment, 2021, 215:268-278. doi: 10.5004/dwt.2021.26394
|
8 |
XUE Mengwei. Electrocatalytic oxidation of urea on nickel electrodeposited glassy carbon electrode[J]. International Journal of Electrochemical Science, 2020:10816-10824. doi: 10.20964/2020.11.07
|
9 |
ZENG Xu, LIU Jun, ZHAO Jianfu. Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe 3+ as catalyst[J]. Water Science and Technology, 2018,2017(3):661-666. doi: 10.2166/wst.2018.216
|
10 |
WANG Wenlong, WU Qianyuan, HUANG Nan,et al. Synergistic effect between UV and chlorine(UV/chlorine) on the degradation of carbamazepine:Influence factors and radical species[J]. Water Research, 2016, 98:190-198. doi: 10.1016/j.watres.2016.04.015
|
11 |
DENG Yang, ZHAO Renzun. Advanced oxidation processes(AOPs) in wastewater treatment[J]. Current Pollution Reports, 2015, 1(3):167-176. doi: 10.1007/s40726-015-0015-z
|
12 |
HOU Liwei, WANG Liguo, ROYER S,et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302:458-467. doi: 10.1016/j.jhazmat.2015.09.033
|
13 |
KARTHIKEYAN S, TITUS A, GNANAMANI A,et al. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes[J]. Desalination, 2011, 281:438-445. doi: 10.1016/j.desal.2011.08.019
|
14 |
SOON A N, HAMEED B H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process[J]. Desalination, 2011, 269(1/2/3):1-16. doi: 10.1016/j.desal.2010.11.002
|
15 |
TYRE B W, WATTS R J, MILLER G C. Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide[J]. Journal of Environmental Quality, 1991, 20(4):832-838. doi: 10.2134/jeq1991.00472425002000040021x
|
16 |
CAI Hao, ZHAO Tianci, MA Zichuan,et al. Efficient removal of metronidazole by the photo-Fenton process with a magnetic Fe 3O 4@PBC composite[J]. Journal of Environmental Engineering, 2020, 146(7):40-56. doi: 10.1061/(asce)ee.1943-7870.0001735
|
17 |
XU Lejin, WANG Jianlong. Fenton-like degradation of 2,4-dichlorophenol using Fe 3O 4 magnetic nanoparticles[J]. Applied Catalysis B:Environmental, 2012, 123/124:117-126. doi: 10.1016/j.apcatb.2012.04.028
|
18 |
ZHAO Hui, TIAN Cheng, MEI Jian,et al. Synergistic effect and mechanism of catalytic degradation toward antibiotic contaminants by amorphous goethite nanoparticles decorated graphitic carbon nitride[J]. Chemical Engineering Journal, 2020, 390:124551. doi: 10.1016/j.cej.2020.124551
|
19 |
MASHAYEKH-SALEHI A, AKBARMOJENI K, ROUDBARI A,et al. Use of mine waste for H 2O 2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles:Catalyst characterization,degradation mechanism,operational parameters and cytotoxicity assessment[J]. Journal of Cleaner Production, 2021, 291:1-61. doi: 10.1016/j.jclepro.2020.125235
|
20 |
GUO Liqin, CHEN Feng, FAN Xiangqun,et al. S-doped α-Fe 2O 3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B:Environmental, 2010, 96(1/2):162-168. doi: 10.1016/j.apcatb.2010.02.015
|
21 |
FU Fenglian, DIONYSIOU D D, LIU Hong. The use of zero-valent iron for groundwater remediation and wastewater treatment:A review[J]. Journal of Hazardous Materials, 2014, 267:194-205. doi: 10.1016/j.jhazmat.2013.12.062
|
22 |
SILWANA N, CALDERÓN B, NTWAMPE S K O,et al. Heterogeneous Fenton degradation of patulin in apple juice using carbon-encapsulated nano zero-valent iron(CE-nZVI)[J]. Foods(Basel,Switzerland), 2020, 9(5):674. doi: 10.3390/foods9050674
|
23 |
|
|
LI Junchao, JIANG Jinyuan, ZHANG Wei,et al. Oxidative degradation of tetracycline hydrochloride using nano Fe/Co alloy and H 2O 2 under Fenton conditions[J]. Research of Environmental Sciences, 2018, 31(4):757-764. doi: 10.13198/j.issn.1001-6929.2018.01.10
|
24 |
|
|
HAN Jindong, JIANG Jinyuan, LI Junchao,et al. Oxidative degradation of oxytetracycline using nano Fe/Co catalyst and H 2O 2 under Fenton conditions[J]. Research of Environmental Sciences, 2020, 33(10):2335-2341. doi: 10.13198/j.issn.1001-6929.2020.05.02
|
25 |
ZHANG Jian, YANG Mengxue, LIAN Ye,et al. Ce 3+ self-doped CeO x /FeOCl:An efficient Fenton catalyst for phenol degradation under mild conditions[J]. Dalton Transactions(Cambridge,England), 2019, 48(10):3476-3485. doi: 10.1039/c8dt04269a
|
26 |
TAN Chaoqun, SHENG Tianyu, XU Qinglong,et al. Cobalt doped iron oxychloride as efficient heterogeneous Fenton catalyst for degradation of paracetamol and phenacetin[J]. Chemosphere, 2021, 263:127989. doi: 10.1016/j.chemosphere.2020.127989
|
27 |
MAO Jie, QUAN Xie, WANG Jing,et al. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO 3 perovskite for degradation of organic pollutants[J]. Frontiers of Environmental Science & Engineering, 2018, 12(6):1-10. doi: 10.1007/s11783-018-1060-9
|
28 |
LIU Wei, WANG Yueyao, AI Zhihui,et al. Hydrothermal synthesis of FeS 2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe(Ⅱ)/Fe(Ⅲ) cycle[J]. ACS Applied Materials & Interfaces, 2015, 7(51):28534-28544. doi: 10.1021/acsami.5b09919
|
29 |
LI Xuning, AO Zhimin, LIU Jiayi,et al. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-like catalysts[J]. ACS Nano, 2016, 10(12):11532-11540. doi: 10.1021/acsnano.6b07522
|
30 |
WANG Guanlong, CHEN Shuo, QUAN Xie,et al. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants[J]. Carbon, 2017, 115:730-739. doi: 10.1016/j.carbon.2017.01.060
|
31 |
PAN Xuqin, GU Zhepei, CHEN Weiming,et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination:A review[J]. Science of the Total Environment, 2021, 754:142104. doi: 10.1016/j.scitotenv.2020.142104
|
32 |
LI Zishun, TANG Xuekun, LIU Kun,et al. Synthesis of a MnO 2/Fe 3O 4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation[J]. Beilstein Journal of Nanotechnology, 2018, 9:1940-1950. doi: 10.3762/bjnano.9.185
|
33 |
NAZARI P, SETAYESH S R. Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment:Theoretical study and optimization[J]. International Journal of Environmental Science and Technology, 2019, 16(10):6329-6346. doi: 10.1007/s13762-018-2048-5
|
34 |
MENG Xiaoqing, YAN Su, WU Wenzhu,et al. Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using acidithiobacillus ferrooxidans[J]. RSC Advances, 2017, 7(35):21638-21648. doi: 10.1039/c7ra02713c
|
35 |
CHEN Aiyin, MA Xiaodong, SUN Hongwen. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites[J]. Journal of Hazardous Materials, 2008, 156(1/2/3):568-575. doi: 10.1016/j.jhazmat.2007.12.059
|
36 |
BOBU M, YEDILER A, SIMINICEANU I,et al. Degradation studies of ciprofloxacin on a pillared iron catalyst[J]. Applied Catalysis B:Environmental, 2008, 83(1/2):15-23. doi: 10.1016/j.apcatb.2008.01.029
|
37 |
PLATA G B O D L, ALFANO O M, CASSANO A E. Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions[J]. Chemical Engineering Journal,2007,137(2): 396-410.
|
38 |
YIN Yue, REN Yi, LU Junhe,et al. The nature and catalytic reactivity of UiO-66 supported Fe 3O 4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions[J]. Applied Catalysis B:Environmental, 2021, 286:119943. doi: 10.1016/j.apcatb.2021.119943
|
39 |
XI Yunfei, SUN Zhiming, HREID T,et al. Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials[J]. Chemical Engineering Journal, 2014, 247:66-74. doi: 10.1016/j.cej.2014.02.077
|
40 |
ZUBIR N A, YACOU C, MOTUZAS J,et al. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe 3O 4 [J]. Chemical Communications(Cambridge,England), 2015, 51(45):9291-9293. doi: 10.1039/c5cc02292d
|
41 |
BOLOBAJEV J, TRAPIDO M,GOI A. Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid[J]. Chemical Engineering Journal, 2015, 281:566-574. doi: 10.1016/j.cej.2015.06.115
|
42 |
CHEN Liwei, MA Jun, LI Xuchun,et al. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J]. Environmental Science & Technology, 2011, 45(9):3925-3930. doi: 10.1021/es2002748
|
43 |
YAMAGUCHI R, KUROSU S, SUZUKI M,et al. Hydroxyl radical generation by zero-valent iron/Cu(ZVI/Cu) bimetallic catalyst in wastewater treatment:Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions[J]. Chemical Engineering Journal, 2018, 334:1537-1549. doi: 10.1016/j.cej.2017.10.154
|
44 |
吕来,胡春. 多相Fenton催化水处理技术与原理[J]. 化学进展,2017(9):981-999.
|
|
Lai LÜ, HU Chun. Heterogeneous Fenton catalytic water treatment technology and mechanism[J]. Progress in Chemistry,2017(9):981-999.
|
45 |
YU Guangfei, Lai LÜ, ZHANG Fagen,et al. Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution[J]. RSC Advances, 2018, 8(6):3312-3320. doi: 10.1039/c7ra12573a
|
46 |
WANG Liang, YAN Dengbiao, Lai LÜ,et al. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process[J]. Journal of Colloid and Interface Science, 2018, 527:251-259. doi: 10.1016/j.jcis.2018.05.055
|
47 |
Lai LÜ, YAN Dengbiao, YU Guangfei,et al. Efficient destruction of pollutants in water by a dual-reaction-center Fenton-like process over carbon nitride compounds-complexed Cu(Ⅱ)-CuAlO 2 [J]. Environmental Science & Technology, 2018, 52(7):4294-4304. doi: 10.1021/acs.est.7b06545
|
48 |
ZHU Yanping, ZHU Runliang, YAN Lixia,et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite[J]. Applied Catalysis B:Environmental, 2018, 239:280-289. doi: 10.1016/j.apcatb.2018.08.025
|
49 |
RAMALHO M L A, MADEIRA V S, BRASILEIRO I L O,et al. Synthesis of mixed oxide Ti/Fe 2O 3 as solar light-induced photocatalyst for heterogeneous photo-Fenton like process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 404:112873. doi: 10.1016/j.jphotochem.2020.112873
|
50 |
GUO He, LI Zhen, ZHANG Ying,et al. Degradation of chloramphenicol by pulsed discharge plasma with heterogeneous Fenton process using Fe 3O 4 nanocomposites[J]. Separation and Purification Technology, 2020, 253:117540. doi: 10.1016/j.seppur.2020.117540
|
51 |
PAN Keliang, YANG Changzhu, HU Jingping,et al. Oxygen vacancy mediated surface charge redistribution of Cu-substituted LaFeO 3 for degradation of bisphenol A by efficient decomposition of H 2O 2 [J]. Journal of Hazardous Materials, 2020, 389:122072. doi: 10.1016/j.jhazmat.2020.122072
|
52 |
QIU Huan, MA Xujun, SUN Chunyu,et al. Surface oxygen vacancies enriched Pt/TiO 2 synthesized with a defect migration strategy for superior photocatalytic activity[J]. Applied Surface Science, 2020, 506:145021. doi: 10.1016/j.apsusc.2019.145021
|
53 |
GAO Pan, CHEN Xuanjin, HAO Mengjie,et al. Oxygen vacancy enhancing the Fe 2O 3-CeO 2 catalysts in Fenton-like reaction for the sulfamerazine degradation under O 2 atmosphere[J]. Chemosphere, 2019, 228:521-527. doi: 10.1016/j.chemosphere.2019.04.125
|
54 |
ZHAN Sihui, ZHANG Hongxiang, MI Xueyue,et al. Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides[J]. Environmental Science & Technology, 2020, 54(13):8333-8343. doi: 10.1021/acs.est.9b07245
|
55 |
ZHANG Nuanqin, CHEN Junyi, FANG Zhanqiang,et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369:588-599. doi: 10.1016/j.cej.2019.03.112
|
56 |
XIAO Yu, HUO Wangchen, YIN Shaoning,et al. One-step hydrothermal synthesis of Cu-doped MnO 2 coated diatomite for degradation of methylene blue in Fenton-like system[J]. Journal of Colloid and Interface Science, 2019, 556:466-475. doi: 10.1016/j.jcis.2019.08.082
|
57 |
ZHAO Ying, AN Hongze, DONG Guojun,et al. Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO 2 materials:Evolution of reactive oxygen species and mechanism[J]. Chemical Engineering Journal, 2020, 388:124371. doi: 10.1016/j.cej.2020.124371
|
58 |
WU Mengyuan, CAI Qingqing, XU Hongpeng,et al. Simulation of FBR-Fenton/GAC process for recalcitrant industrial wastewater treatment with a computational fluid dynamics-kinetic model framework[J]. Water Research, 2021, 203:117504. doi: 10.1016/j.watres.2021.117504
|
59 |
TOLBA A, ALALM M GAR, ELSAMADONY M,et al. Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe 3O 4-MWCNTs[J]. Process Safety and Environmental Protection, 2019, 128:273-283. doi: 10.1016/j.psep.2019.06.011
|
60 |
TALWAR S, VERMA A K, SANGAL V K. Modeling and optimization of fixed mode dual effect(photocatalysis and photo-Fenton) assisted Metronidazole degradation using ANN coupled with genetic algorithm[J]. Journal of Environmental Management, 2019, 250:109428. doi: 10.1016/j.jenvman.2019.109428
|
61 |
RAHMANI A, KHATAEE A, KAYMAK B,et al. Production of martite nanoparticles with high energy planetary ball milling for heterogeneous Fenton-like process[J]. RSC Advances, 2016, 6(84):81219-81230. doi: 10.1039/c6ra08491e
|
62 |
FARSHCHI M E, AGHDASINIA H, KHATAEE A. Heterogeneous Fenton reaction for elimination of Acid Yellow 36 in both fluidized-bed and stirred-tank reactors:Computational fluid dynamics versus experiments[J]. Water Research, 2019, 151:203-214. doi: 10.1016/j.watres.2018.12.011
|
63 |
ZHAO Mingchen, MA Xiaodong, LI Ruixuan,et al. In-situ slow production of Fe 2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy:Advantages,CFD and toxicity assessment[J]. Electrochimica Acta, 2022, 411:140059. doi: 10.1016/j.electacta.2022.140059
|
64 |
ALI M E M, GAD-ALLAH T A, ELMOLLA E S,et al. Heterogeneous Fenton process using iron-containing waste(ICW) for methyl orange degradation:Process performance and modeling[J]. Desalination and Water Treatment, 2014, 52(22/23/24):4538-4546. doi: 10.1080/19443994.2013.803320
|
65 |
ZOLFAGHARI P, AGHBOLAGHY M, KARIMI A,et al. Continuous degradation of an organic pollutant using heterogeneous magnetic biocatalyst and CFD analysis of the process[J]. Process Safety and Environmental Protection, 2019, 121:338-348. doi: 10.1016/j.psep.2018.11.004
|
66 |
LIU Yuxin, YU Zebin, HOU Yanping,et al. Highly efficient Pd-Fe/Ni foam as heterogeneous Fenton catalysts for the three-dimensional electrode system[J]. Catalysis Communications, 2016, 86:63-66. doi: 10.1016/j.catcom.2016.08.012
|
67 |
HU C, HUNG Y C, TSENG P Y,et al. The roles of metal species supported on Fe 3O 4 aerogel for photoassisted 4-nitrophenol reduction and benzoic acid oxidation[J]. Catalysis Science & Technology, 2021, 11(10):3447-3455. doi: 10.1039/d1cy00077b
|
68 |
WANG Cheng, YING Chaoyun, TANG Yadong,et al. Synergistic effect of Co(Ⅱ) doping on FeS activating heterogeneous Fenton processes toward degradation of Rhodamine B[J]. Chemical Engineering Journal Advances, 2020, 4:100044. doi: 10.1016/j.ceja.2020.100044
|
69 |
THOMAS N, DIONYSIOU D D, PILLAI S C. Heterogeneous Fenton catalysts:A review of recent advances[J]. Journal of Hazardous Materials, 2021, 404:124082. doi: 10.1016/j.jhazmat.2020.124082
|
70 |
GAO Jing, LIU Yutang, XIA Xinnian,et al. Fe 1- x Zn x S ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol[J]. Journal of Hazardous Materials, 2018, 353:393-400. doi: 10.1016/j.jhazmat.2018.04.029
|
71 |
KHATAEE A, HASSANDOOST R, RAHIM POURAN S. Cerium-substituted magnetite:Fabrication,characterization and sonocatalytic activity assessment[J]. Ultrasonics Sonochemistry, 2018, 41:626-640. doi: 10.1016/j.ultsonch.2017.10.028
|
72 |
SANTOS DE LIMA A, FERNANDES PUPO NOGUEIRA R. Cerium-modified iron oxides applied as catalysts in the heterogeneous Fenton system for degradation of cephalexin[J]. Environmental Science and Pollution Research International, 2021, 28(19):23767-23777. doi: 10.1007/s11356-020-11238-5
|
73 |
GOGOI A, NAVGIRE M, SARMA K C,et al. Fe 3O 4-CeO 2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol[J]. Chemical Engineering Journal, 2017, 311:153-162. doi: 10.1016/j.cej.2016.11.086
|
74 |
LI Haitao, GAO Qiang, WANG Guanshuai,et al. Unique electron reservoir properties of manganese in Mn(Ⅱ)-doped CeO 2 for reversible electron transfer and enhanced Fenton-like catalytic performance[J]. Applied Surface Science, 2020, 502:144295. doi: 10.1016/j.apsusc.2019.144295
|
75 |
GHASEMI H, MOZAFFARI S, MOUSAVI S H,et al. Decolorization of wastewater by heterogeneous Fenton reaction using MnO 2-Fe 3O 4/CuO hybrid catalysts[J]. Journal of Environmental Chemical Engineering, 2021, 9(2):105091. doi: 10.1016/j.jece.2021.105091
|
76 |
NGUYEN X S, ZHANG Gaoke, YANG Xianfeng. Mesocrystalline Zn-doped Fe 3O 4 hollow submicrospheres:Formation mechanism and enhanced photo-Fenton catalytic performance[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8900-8909. doi: 10.1021/acsami.6b16839
|
77 |
ZHUANG Yuan, WANG Xuechun, LIU Qiaozhi,et al. N-doped FeOOH/RGO hydrogels with a dual-reaction-center for enhanced catalytic removal of organic pollutants[J]. Chemical Engineering Journal, 2020, 379:122310. doi: 10.1016/j.cej.2019.122310
|
78 |
YANG Jingren, ZENG Deqian, LI Jun,et al. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon[J]. Chemical Engineering Journal, 2021, 404:126376. doi: 10.1016/j.cej.2020.126376
|
79 |
LIU Chenrui, LIU Yun, DANG Zhi,et al. Enhancement of heterogeneous photo-Fenton performance of core-shell structured boron-doped reduced graphene oxide wrapped magnetical Fe 3O 4 nanoparticles:Fe(Ⅱ)/Fe(Ⅲ) redox and mechanism[J]. Applied Surface Science, 2021, 544:148886. doi: 10.1016/j.apsusc.2020.148886
|
80 |
CHEN Fengxia, TANG Daojian, WANG Ya,et al. Integration of homogeneous and heterogeneous advanced oxidation processes:Confined iron dancing with cyclodextrin polymer[J]. Chemosphere, 2020, 250:126226. doi: 10.1016/j.chemosphere.2020.126226
|
81 |
WANG Jing, LIU Chao, HUSSAIN I,et al. Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres:The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye[J]. RSC Advances, 2016, 6(59):54623-54635. doi: 10.1039/c6ra08501f
|
82 |
XIN Shuaishuai, LIU Guocheng, MA Xiaohan,et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO 2 for the degradation of tetracycline:Economical synthesis,catalytic performance and mechanism[J]. Applied Catalysis B:Environmental, 2021, 280:119386. doi: 10.1016/j.apcatb.2020.119386
|
83 |
DUAN Feng, YANG Yuezhu, LI Yuping,et al. Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst[J]. Journal of Environmental Sciences, 2014, 26(5):1171-1179. doi: 10.1016/s1001-0742(13)60532-x
|
84 |
WANG Jing, LIU Chao, QI Junwen,et al. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe 0-Fe 2O 3 nanoparticles embedded ordered mesoporous carbon composite catalyst[J]. Environmental Pollution, 2018, 243:1068-1077. doi: 10.1016/j.envpol.2018.09.057
|
85 |
NIE Yulun, HU Chun, ZHOU Lei,et al. An efficient electron transfer at the Fe 0/iron oxide interface for the photoassisted degradation of pollutants with H 2O 2 [J]. Applied Catalysis B:Environmental, 2008, 82(3/4):151-156. doi: 10.1016/j.apcatb.2008.01.019
|
86 |
ZHENG Pei, PAN Zhe, ZHANG Jun. Synergistic enhancement in catalytic performance of superparamagnetic Fe 3O 4@ Bacilus subtilis as recyclable Fenton-like catalyst[J]. Catalysts, 2017, 7(11):349. doi: 10.3390/catal7110349
|
87 |
ZHANG Xiaoliang, HE Manli, LIU Jiahui,et al. Fe 3O 4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration[J]. Chinese Science Bulletin, 2014, 59(27):3406-3412. doi: 10.1007/s11434-014-0439-7
|
88 |
ZHANG Qiongdan, WANG Qiongsheng, WANG Shiming. Efficient heterogeneous Fenton-like catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk[J]. Chemical Physics Letters, 2020, 753:137598. doi: 10.1016/j.cplett.2020.137598
|
89 |
BAO Teng, JIN Jie, DAMTIE M M,et al. Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for p-chlorophenol degradation via heterogeneous Fenton reaction[J]. Journal of Saudi Chemical Society, 2019, 23(7):864-878. doi: 10.1016/j.jscs.2019.02.001
|
90 |
YANG Zhaoshun, ZHU Peng, YAN Chongmiao,et al. Biosynthesized Schwertmannite@Biochar composite as a heterogeneous Fenton-like catalyst for the degradation of sulfanilamide antibiotics[J]. Chemosphere, 2021, 266:129175. doi: 10.1016/j.chemosphere.2020.129175
|
91 |
WANG Manlin, FANG Guodong, LIU Peng,et al. Fe 3O 4@ β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol(4-CP)[J]. Applied Catalysis B:Environmental, 2016, 188:113-122. doi: 10.1016/j.apcatb.2016.01.071
|
92 |
CHEN Mantang, WANG Nan, WANG Xiaobo,et al. Enhanced degradation of tetrabromobisphenol A by magnetic Fe 3O 4@ZIF-67 composites as a heterogeneous Fenton-like catalyst[J]. Chemical Engineering Journal, 2021, 413:127539. doi: 10.1016/j.cej.2020.127539
|
93 |
GAN Guoqiang, LIU Juan, ZHU Zhixi,et al. A novel magnetic nanoscaled Fe 3O 4/CeO 2 composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst[J]. Chemosphere, 2017, 168:254-263. doi: 10.1016/j.chemosphere.2016.10.064
|
94 |
PAIER J, PENSCHKE C, SAUER J. Oxygen defects and surface chemistry of ceria:Quantum chemical studies compared to experiment[J]. Chemical Reviews, 2013, 113(6):3949-3985. doi: 10.1021/cr3004949
|
95 |
DUAN Xiaoguang, SUN Hongqi, AO Zhimin,et al. Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation[J]. Carbon, 2016, 107:371-378. doi: 10.1016/j.carbon.2016.06.016
|
96 |
REN Wenhao, TAN Xin, YANG Wanfeng,et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO 2 [J]. Angewandte Chemie(International Ed. in English), 2019, 58(21):6972-6976. doi: 10.1002/anie.201901575
|
97 |
LI Zehui, HE Hongyan, CAO Hongbin,et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis[J]. Applied Catalysis B:Environmental, 2019, 240:112-121. doi: 10.1016/j.apcatb.2018.08.074
|
98 |
YAN Chao, FENG Diejing, JIANG Yunjie,et al. Bio-template route for the facile fabrication of TiO 2@ Bacillus subtilis composite particles and their application for the degradation of rhodamine B[J]. Catalysis Letters, 2015, 145(6):1301-1306. doi: 10.1007/s10562-015-1517-4
|
99 |
WU Zhangxiong, LI Wei, WEBLEY P A,et al. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal[J]. Advanced Materials(Deerfield Beach,Fla.), 2012, 24(4):485-491. doi: 10.1002/adma.201103789
|
100 |
LING Xiaofeng, LI Jiansheng, ZHU Wen,et al. Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene[J]. Chemosphere, 2012, 87(6):655-660. doi: 10.1016/j.chemosphere.2012.02.002
|
101 |
LANGE G A, EUGÉNIO S, DUARTE R G,et al. Characterisation and electrochemical behaviour of electrodeposited Cu-Fe foams applied as pseudocapacitor electrodes[J]. Journal of Electroanalytical Chemistry, 2015, 737:85-92. doi: 10.1016/j.jelechem.2014.10.025
|
102 |
ZHENG Jingjing, CHEN Jingjing, SHAO Hui,et al. Synthesis of MeSAPO-11 zeolites from attapulgite for dehydration of carbohydrates to HMF[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6):103-114. doi: 10.1063/1.4997555
|
103 |
ZHU Jie, CUI Yu, NAWAZ Z,et al. In situ synthesis of SAPO-34 zeolites in Kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process[J]. Chinese Journal of Chemical Engineering, 2010, 18(6):979-987. doi: 10.1016/s1004-9541(09)60156-7
|
104 |
LIU Yongzhi, ZHENG Huaili, AN Yanyan,et al. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance:Role of β-cyclodextrin[J]. Separation and Purification Technology, 2019, 228:115735. doi: 10.1016/j.seppur.2019.115735
|
105 |
ZHANG Mengwei, YANG Mingtong, TONG Shaoping,et al. Ferrocene-modified iron-based metal-organic frameworks as an enhanced catalyst for activating oxone to degrade pollutants in water[J]. Chemosphere, 2018, 213:295-304. doi: 10.1016/j.chemosphere.2018.09.051
|
106 |
QIU Jianhao, ZHANG Xingguang, FENG Yi,et al. Modified metal-organic frameworks as photocatalysts[J]. Applied Catalysis B:Environmental, 2018, 231:317-342. doi: 10.1016/j.apcatb.2018.03.039
|
107 |
ROSSIN A, TUCI G, LUCONI L,et al. Metal-organic frameworks as heterogeneous catalysts in hydrogen production from lightweight inorganic hydrides[J]. ACS Catalysis, 2017, 7(8):5035-5045. doi: 10.1021/acscatal.7b01495
|
108 |
MIAO Xiaozeng, DAI Huiwang, CHEN Jianxin,et al. The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst[J]. Separation and Purification Technology, 2018, 200:36-43. doi: 10.1016/j.seppur.2018.02.012
|
109 |
陈子杨,黄胜,余健. 三维电极-电Fenton处理毒死蜱废水研究[J]. 工业水处理,2022,42(4):132-137.
|
|
CHEN Ziyang, HUANG Sheng, YU Jian. Study on treatment of chlorpyrifos wastewater by three-dimensional electrode-electro-Fenton process[J]. Industral Water Treatment,2022,42(4):132-137.
|
110 |
ZHOU Zijie, YIN Xu, LI Wei,et al. Electric field enhanced heterogeneous Fenton reaction:Simultaneous pollutant degradation and catalyst reactivation[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(12):3344-3354. doi: 10.1002/jctb.7194
|
111 |
CHENG Zhuoying, LUO Suyue, LI Xiaojuan,et al. Ultrasound-assisted heterogeneous Fenton-like process for methylene blue removal using magnetic MnFe 2O 4/biochar nanocomposite[J]. Applied Surface Science, 2021, 566:150654. doi: 10.1016/j.apsusc.2021.150654
|
112 |
SHEN Xiaodong, CAI Zhuoer, HU Jinzhong,et al. Highly efficient microwave-assisted Fenton degradation of toluene nitration wastewater over microwave-responsive catalyst of Fe 3O 4-BiOCl[J]. ChemistrySelect, 2022, 7(33):4-12. doi: 10.1002/slct.202200804
|
113 |
LI Shuo, ZHANG Guangshan, ZHANG Wen,et al. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid(PFOA) using Pb-BiFeO 3/rGO as heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 326:756-764. doi: 10.1016/j.cej.2017.06.037
|
114 |
ELMETWALLY A E, ESHAQ G, AL-SABAGH A M,et al. Insight into heterogeneous Fenton-sonophotocatalytic degradation of nitrobenzene using metal oxychlorides[J]. Separation and Purification Technology, 2019, 210:452-462. doi: 10.1016/j.seppur.2018.08.029
|
115 |
石冬妮,李慧玲,滕然,等. Fe3O4基类Fenton催化剂的改性及应用研究进展[J]. 工业水处理,2022,43(7):41-52.
|
|
SHI Dongni, LI Huiling, TENG Ran,et al. Progress in modification and application of Fe3O4 based Fenton-like catalysts in organic wastewater treatment[J]. Industral Water Treatment,2022,43(7):41-52.
|