1 |
MAHVI A H, MALEKI A. Photosonochemical degradation of phenol in water[J]. Desalination and Water Treatment, 2010, 20(1/2/3):197-202. doi: 10.5004/dwt.2010.1562
|
2 |
WU Xiaolu, FU Min, LU Peng,et al. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation[J]. Chinese Journal of Catalysis, 2019, 40(5):776-785. doi: 10.1016/s1872-2067(19)63300-0
|
3 |
XU Longyao, ZHANG He, XIONG Ping,et al. Occurrence,fate,and risk assessment of typical tetracycline antibiotics in the aquatic environment:A review[J]. Science of the Total Environment, 2021, 753:141975. doi: 10.1016/j.scitotenv.2020.141975
|
4 |
WANG Qi, ZHANG Wenming, HU Xiaoru,et al. Hollow spherical WO 3/TiO 2 heterojunction for enhancing photocatalytic performance in visible-light[J]. Journal of Water Process Engineering, 2021, 40:101943. doi: 10.1016/j.jwpe.2021.101943
|
5 |
|
|
NIU Kaili, SUN Bing, LIU Yu,et al. Research progress of bismuth tungstate photocatalyst application in tetracycline wastewater treatment[J]. Industrial Water Treatment, 2021, 41(11):9-15. doi: 10.19965/j.cnki.iwt.2020-0863
|
6 |
ZAMBRANO J, GARCÍA-ENCINA P A, JIMÉNEZ J J,et al. Photolytic and photocatalytic removal of a mixture of four veterinary antibiotics[J]. Journal of Water Process Engineering, 2022, 48:102841. doi: 10.1016/j.jwpe.2022.102841
|
7 |
CHEN Fang, MA Tianyi, ZHANG Tierui,et al. Atomic-level charge separation strategies in semiconductor-based photocatalysts[J]. Advanced Materials(Deerfield Beach,Fla.), 2021, 33(10):e2005256. doi: 10.1002/adma.202005256
|
8 |
WANG Chuya, ZHANG Xing, QIU Haibin,et al. Bi 24O 31Br 10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride[J]. Applied Catalysis B:Environmental, 2017, 205:615-623. doi: 10.1016/j.apcatb.2017.01.015
|
9 |
GUO Xingyu, LI Xiangqing, QIN Lixia,et al. A highly active nano-micro hybrid derived from Cu-bridged TiO 2/porphyrin for enhanced photocatalytic hydrogen production[J]. Applied Catalysis B:Environmental, 2019, 243:1-9. doi: 10.1016/j.apcatb.2018.10.030
|
10 |
LIOU T H, HUNG L W, LIU Chaolin,et al. Direct synthesis of nano titania on highly-ordered mesoporous SBA-15 framework for enhancing adsorption and photocatalytic activity[J]. Journal of Porous Materials, 2018, 25(5):1337-1347. doi: 10.1007/s10934-017-0544-5
|
11 |
WEI J Q, CHEN X J, WANG P F,et al. High surface area TiO 2/SBA-15 nanocomposites:Synthesis,microstructure and adsorption-enhanced photocatalysis[J]. Chemical Physics, 2018, 510:47-53. doi: 10.1016/j.chemphys.2018.05.012
|
12 |
DOUSTKHAH E, ROSTAMNIA S. Single site supported N-sulfonic acid and N-sulfamate onto SBA-15 for green and sustainable oxidation of sulfides[J]. Materials Chemistry and Physics, 2016, 177:229-235. doi: 10.1016/j.matchemphys.2016.04.023
|
13 |
GOLCHIN HOSSEINI H, ROSTAMNIA S. Post-synthetically modified SBA-15 with NH 2-coordinately immobilized iron-oxine:SBA-15/NH 2-FeQ 3 as a Fenton-like hybrid catalyst for the selective oxidation of organic sulfides[J]. New Journal of Chemistry, 2018, 42(1):619-627. doi: 10.1039/c7nj02742g
|
14 |
|
|
FENG Lili, ZHAO Wei, LIU Yang,et al. Photocatalytic degradation of rhodamine B by nanocrystalline TiO 2 loaded into MCM-41 molecular sieves[J]. Acta Physico-Chimica Sinica, 2009, 25(7):1347-1351. doi: 10.3866/PKU.WHXB20090707
|
15 |
LIU Xinlin, Peng LÜ, YAO Guanxin,et al. Microwave-assisted synthesis of selective degradation photocatalyst by surface molecular imprinting method for the degradation of tetracycline onto Cl-TiO 2 [J]. Chemical Engineering Journal, 2013, 217:398-406. doi: 10.1016/j.cej.2012.12.007
|
16 |
CAI Qiang, LIN Wenyong, XIAO Fengshou,et al. The preparation of highly ordered MCM-41 with extremely low surfactant concentration[J]. Microporous and Mesoporous Materials, 1999, 32(1/2):1-15. doi: 10.1016/s1387-1811(99)00082-7
|
17 |
徐宁,格根海日,代小,等. g-C3N4/TiO2纳米复合纤维的制备及可见光催化性能[J]. 化工新型材料,2022,50(5):94-97.
|
18 |
|
|
SONG Jin, WU Fenglong, WANG Yuejun. Study on preparation of Fe/modified MCM-41 catalyst with different loading methods and degradation of methylene blue[J]. Inorganic Chemicals Industry, 2021, 53(11):122-128. doi: 10.19964/j.issn.1006-4990.2021-0051
|
19 |
|
|
RAO Han, MA Yongmei, LI Siyue. Photocatalytic degradation of tetracycline hydrochloride by NaYF 4∶Yb,Tm@TiO 2 composite catalyst[J]. Journal of Functional Materials, 2022, 53(3):3011-3019. doi: 10.3969/j.issn.1001-9731.2022.03.002
|
20 |
LI Dan, LIU Heng, NIU Chaoqun,et al. Mpg-C 3N 4-ZIF-8 composites for the degradation of tetracycline hydrochloride using visible light[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2019, 80(11):2206-2217. doi: 10.2166/wst.2020.038
|
21 |
|
|
YU Huawa, WANG Jing, WANG Anxiang. The effect of PVP on the ZnO nanostructure and photocatalytic properties[J]. Journal of Xi’an Polytechnic University, 2020, 34(6):47-51. doi: 10.13338/j.issn.1674-649x.2020.06.008
|
22 |
XU Jingjing, LIU Chen, NIU Junfeng,et al. Preparation of In 2S 3 nanosheets decorated KNbO 3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation[J]. Separation and Purification Technology, 2020, 230:115861. doi: 10.1016/j.seppur.2019.115861
|