1 |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2022:403-446.
|
|
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing:China Statistical Publishing House,2022:403-446.
|
2 |
TIAN Xiangmiao, SONG Yudong, SHEN Zhiqiang,et al. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment[J]. Journal of Cleaner Production, 2020, 245:118692. doi: 10.1016/j.jclepro.2019.118692
|
3 |
XIE Wancen, TIAN Lun, TANG Peng,et al. Shale gas wastewater characterization:Comprehensive detection,evaluation of valuable metals,and environmental risks of heavy metals and radionuclides[J]. Water Research, 2022, 220:118703. doi: 10.1016/j.watres.2022.118703
|
4 |
|
|
FENG Liqiong, WANG Qian, XUE Yankui. Discussion on interference elimination of heavy metal detection for drilling and oil & gas field wastewater[J]. Environmental Protection of Oil & Gas Fields, 2013, 23(3):49-50. doi: 10.3969/j.issn.1005-3158.2013.03.015
|
5 |
|
|
WANG Yunfeng. Discussion on the urgency of pollution control of drilling wastewater in oil and gas fields[J]. Science & Technology Information, 2012(19):449. doi: 10.3969/j.issn.1001-9960.2012.19.339
|
6 |
|
7 |
|
|
WANG Shunwu, ZHAO Xiaofei, LI Ziwang,et al. Research progresses on treatment technologies of oilfield fracturing flow-back fluid[J]. Environmental Protection of Chemical Industry, 2016, 36(5):493-499. doi: 10.3969/j.issn.1006-1878.2016.05.004
|
8 |
CHOI S H. On the brine re-utilization of a multi-stage flashing(MSF) desalination plant[J]. Desalination, 2016, 398:64-76. doi: 10.1016/j.desal.2016.07.020
|
9 |
|
|
LI Ruimin, KONG Songtao, WANG Kun. Development and applications in sewage treatment of the thermal evaporation method[J]. Guangdong Chemical Industry, 2015, 42(9):158-159. doi: 10.3969/j.issn.1007-1865.2015.09.077
|
10 |
LOKK R, ALSADAIE S M, MUJTABA I M. Dynamic simulation of once-through multistage flash (MSF-OT) desalination process:Effect of seawater temperature on the fouling mechanism in the heat exchangers[J]. Computers & Chemical Engineering, 2021, 155:107515. doi: 10.1016/j.compchemeng.2021.107515
|
11 |
|
|
FENG Houjun, XIE Chungang. Status and prospect of Chinese seawater desalination technology[J]. Chemical Industry and Engineering, 2010, 27(2):103-109. doi: 10.3969/j.issn.1004-9533.2010.02.003
|
12 |
KAMALI R K, ABBASSI A, SADOUGH VANINI S A,et al .Thermodynamic design and parametric study of MED-TVC[J]. Desalination, 2008, 222(1/2/3):596-604. doi: 10.1016/j.desal.2007.01.120
|
13 |
GAUTAMI G, KHANAM S. Selection of optimum configuration for multiple effect evaporator system[J]. Desalination, 2012, 288:16-23. doi: 10.1016/j.desal.2011.12.005
|
14 |
DRUETTA P, AGUIRRE P, MUSSATI S. Optimization of multi-effect evaporation desalination plants[J]. Desalination, 2013, 311:1-15. doi: 10.1016/j.desal.2012.10.033
|
15 |
AL-MUTAZ I S, WAZEER I. Comparative performance evaluation of conventional multi-effect evaporation desalination processes[J]. Applied Thermal Engineering, 2014, 73(1):1194-1203. doi: 10.1016/j.applthermaleng.2014.09.025
|
16 |
HANSHIK C, JEONG H, JEONG K W,et al. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT(top brine temperature)[J]. Energy, 2016, 107:683-692. doi: 10.1016/j.energy.2016.04.028
|
17 |
ZHAO Dongfeng, XUE Jianliang, LI Shi,et al. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater[J]. Desalination, 2011, 273(2/3):292-298. doi: 10.1016/j.desal.2011.01.048
|
18 |
ONISHI V C, CARRERO-PARREÑO A, REYES-LABARTA J A,et al. Shale gas flowback water desalination:Single vs multiple-effect evaporation with vapor recompression cycle and thermal integration[J]. Desalination, 2017, 404:230-248. doi: 10.1016/j.desal.2016.11.003
|
19 |
于永辉,孙承林,杨旭,等. 稠油污水低温多效蒸发深度处理回用热采锅炉中试研究[J]. 水处理技术,2010,36(12):98-102.
|
|
YU Yonghui, SUN Chenglin, YANG Xu,et al. Pilot study on deep treatment of heavy oil wastewater by low temperature multi-effect evaporation and reuse in thermal recovery boiler[J]. Technology of Water Treatment,2010,36(12):98-102.
|
20 |
|
|
WANG Bingxian. Study on advanced treatment and reuse of produced water from gas field:Taking puguang gas field as an example[D]. Ji’nan:Shandong Jianzhu University, 2020. doi: 10.1007/978-3-662-61147-0_9
|
21 |
|
|
ZHANG Lei, WANG Wei, HUANG Wensheng. Study on water resource recovery process of yuanba gas field[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2020, 10(5):12-15. doi: 10.3969/j.issn.2095-1493.2020.05.004
|
22 |
|
|
HE Muying, CAI Yuling, XU Juan. Development and application of mechanical vapour recompression[J]. Guangdong Chemical Industry, 2013, 40(17):115-116. doi: 10.3969/j.issn.1007-1865.2013.17.060
|
23 |
YUE Yunkai, YANG Junling, LI Xiaoqiong,et al. Experimental research on falling film flow and heat transfer characteristics outside the vertical tube[J]. Applied Thermal Engineering, 2021, 199:117592. doi: 10.1016/j.applthermaleng.2021.117592
|
24 |
ZHOU Yasu, SHI Chengjun, DONG Guoqiang. Analysis of a mechanical vapor recompression wastewater distillation system[J]. Desalination, 2014, 353:91-97. doi: 10.1016/j.desal.2014.09.013
|
25 |
JIANG Hua, ZHANG Ziyao, GONG Wuqi. Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system[J]. Applied Thermal Engineering, 2020, 179:115646. doi: 10.1016/j.applthermaleng.2020.115646
|
26 |
SI Zetian, HAN Dong, XIANG Jiawei. Experimental investigation on the mechanical vapor recompression evaporation system coupled with multiple vacuum membrane distillation modules to treat industrial wastewater[J]. Separation and Purification Technology, 2021, 275:119178. doi: 10.1016/j.seppur.2021.119178
|
27 |
SHEN Jiubing, TAN Niugao, LI Zhichao,et al. Analysis of a novel double-effect split mechanical vapor recompression systems for wastewater concentration[J]. Applied Thermal Engineering, 2022, 216:119019. doi: 10.1016/j.applthermaleng.2022.119019
|
28 |
|
|
GU Chengzhen, YAN Xu, ZHANG Zhiqiang,et al. Research progress on mechanical vapor recompression evaporation system in performance parameters[J]. Food & Machinery, 2013, 29(5):234-236. doi: 10.3969/j.issn.1003-5788.2013.05.062
|
29 |
|
|
LI Qingfang, LIU Zhongliang, PANG Huizhong,et al. Process simulation and analysis of mechanical vapor compression based oilfield waste water desalination systems[J]. CIESC Journal, 2011, 62(7):1963-1969. doi: 10.3969/j.issn.0438-1157.2011.07.027
|
30 |
|
|
WANG Yuan, SUN Zhaopeng, LI Yongsheng,et al. Analysis and double-effect MVR treatment of shale gas fracturing flow-back fluid[J]. Environmental Protection of Chemical Industry, 2016, 36(5):511-517. doi: 10.3969/j.issn.1006-1878.2016.05.007
|
31 |
田玲. MVR蒸发技术在废水处理中的应用研究[J]. 工业水处理,2023,43(4):144-148.
|
|
TIAN Ling. Study on the application of MVR evaporation technology in wastewater treatment[J]. Industrial Water Treatment,2023,43(4):144-148.
|
32 |
DESHMUKH A, ELIMELECH M. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination[J]. Journal of Membrane Science, 2017, 539:458-474. doi: 10.1016/j.memsci.2017.05.017
|
33 |
LIAO Yuan, LOH C H, WANG Rong,et al. Electrospun superhydrophobic membranes with unique structures for membrane distillation[J]. ACS Applied Materials and Interfaces, 2014, 6(18):16035-16048. doi: 10.1021/am503968n
|
34 |
SEYED SHAHABADI S M, RABIEE H, SEYEDI S M,et al. Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene(TiO 2/PH) nanofibrous membrane for high flux membrane distillation[J]. Journal of Membrane Science, 2017, 537:140-150. doi: 10.1016/j.memsci.2017.05.039
|
35 |
TANG Min, CHRISTIE K S S, HOU Deyin,et al. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method[J]. Journal of Membrane Science, 2021, 617:118666. doi: 10.1016/j.memsci.2020.118666
|
36 |
HOU Deyin, YUAN Ziyi, TANG Min,et al. Effect and mechanism of an anionic surfactant on membrane performance during direct contact membrane distillation[J]. Journal of Membrane Science, 2020, 595:117495. doi: 10.1016/j.memsci.2019.117495
|
37 |
SU Chunlei, HORSEMAN T, CAO Hongbin,et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance[J]. Environmental Science and Technology, 2019, 53(20):11801-11809. doi: 10.1021/acs.est.9b04362
|
38 |
ZUO Kuichang, WANG Weipeng, DESHMUKH A,et al. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters[J]. Nature Nanotechnology, 2020, 15(12):1025-1032. doi: 10.1038/s41565-020-00777-0
|
39 |
POLITANO A, ARGURIO P, DI PROFIO G,et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 2017, 29(2):1603504. doi: 10.1002/adma.201603504
|
40 |
YANG Xing, WANG Rong, FANE A G. Novel designs for improving the performance of hollow fiber membrane distillation modules[J]. Journal of Membrane Science, 2011, 384(1/2):52-62. doi: 10.1016/j.memsci.2011.09.007
|
41 |
THOMAS N, KUMAR M, PALMISANO G,et al. Antiscaling 3D printed feed spacers via facile nanoparticle coating for membrane distillation[J]. Water Research, 2021, 189:116649. doi: 10.1016/j.watres.2020.116649
|
42 |
WINTER D, KOSCHIKOWSKI J, GROSS F,et al. Comparative analysis of full-scale membrane distillation contactors-methods and modules[J]. Journal of Membrane Science, 2017, 524:758-771. doi: 10.1016/j.memsci.2016.11.080
|
43 |
DU J R, DU Wenlin, FENG Xianshe,et al. Membrane distillation enhanced by an asymmetric electric field[J]. AIChE Journal, 2014, 60(6):2307-2313. doi: 10.1002/aic.14422
|
44 |
DU Xuewei, ZHANG Zuoyou, CARLSON K H,et al. Membrane fouling and reusability in membrane distillation of shale oil and gas produced water:Effects of membrane surface wettability[J]. Journal of Membrane Science, 2018, 567:199-208. doi: 10.1016/j.memsci.2018.09.036
|
45 |
CARRERO-PARREÑO A, ONISHI V C, RUIZ-FEMENIA R,et al. Optimization of multistage membrane distillation system for treating shale gas produced water[J]. Desalination, 2019, 460:15-27. doi: 10.1016/j.desal.2019.03.002
|
46 |
KORAK J, MUNGAN A, WATTS L. Critical review of waste brine management strategies for drinking water treatment using strong base ion exchange[J]. Journal of Hazardous Materials, 2023, 441:129473.. doi: 10.1016/j.jhazmat.2022.129473
|
47 |
KANG S Y, LEE J U, MOON S H,et al. Competitive adsorption characteristics of Co 2+,Ni 2+,and Cr 3+ by IRN-77 cation exchange resin in synthesized wastewater[J]. Chemosphere, 2004, 56(2):141-147. doi: 10.1016/j.chemosphere.2004.02.004
|
48 |
PEHLIVAN E, ALTUN T. The study of various parameters affecting the ion exchange of Cu 2+,Zn 2+,Ni 2+,Cd 2+,and Pb 2+ from aqueous solution on Dowex 50 W synthetic resin[J]. Journal of Hazardous Materials, 2006, 134(1/2/3):149-156. doi: 10.1016/j.jhazmat.2005.10.052
|
49 |
李保花,刘福强,李兰娟,等. 分离与回收重金属的典型树脂研究进展[J]. 离子交换与吸附,2011,27(3):279-288.
|
|
LI Baohua, LIU Fuqiang, LI Lanjuan,et al. Research and application development of ion exchange resins on the separation and recovery of heavy metals[J]. Ion Exchange and Adsorption,2011,27(3):279-288.
|
50 |
JING Xiaosheng, LIU Fuqiang, YANG Xin,et al. Adsorption performances and mechanisms of the newly synthesized N, N’-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):589-596. doi: 10.1016/j.jhazmat.2009.01.020
|
51 |
许根福,汤为龙,张国甫. 离子交换法软化处理稠油污水技术[C]// 面向21世纪的科技进步与社会经济发展(下册),1999:360.
|
|
XU Genfu, TANG Weilong, ZHANG Guofu. Ion exchange softening treatment of heavy oil wastewater technology[C]//Science and Technology for Social and Economic Development:Toward the 21th Century,1999:360.
|
52 |
徐静,宋玉栋,周岳溪,等. 离子交换法去除丙烯酸丁酯废水中Ca2+的研究[J]. 工业水处理,2012,32(10):23-26.
|
|
XU Jing, SONG Yudong, ZHOU Yuexi,et al. Removal of Ca2+ from butyl acrylate wastewater by ion-exchange[J]. Industrial Water Treatment,2012,32(10):23-26.
|
53 |
纪文娟,黄昌猛,李晓容,等. 离子交换树脂在天然气净化厂的应用[C]// 中国油气田地面工程技术交流大会. 北京:中国石油学会,2013:254-256.
|
|
JI Wenjuan, HUANG Changmeng, LI Xiaorong,et al. Application of ion exchange resin in natural gas purification plant[C]// China Oil and Gas Field Surface Engineering Technology Exchange Conference. China Petroleum Society,2013:254-256.
|
54 |
|
|
CHEN Shijia, WU Xiaoyan, ZHU Hongqing,et al. Research on the characteristics of weak-acid type resin suitable for offshore oilfield polymer preparing water softening[J]. Industrial Water Treatment, 2014, 34(1):68-70. doi: 10.11894/1005-829x.2014.34(1).068
|
55 |
|
|
LI Zanzhong, QIAO Zirong. Analysis and discussion on seawater desalination by reverse osmosis technology[J]. Industrial Water Treatment, 2011, 31(3):10-14. doi: 10.11894/1005-829x.2011.31.(3).11
|
56 |
叶鸿宇,蔡晓健,陈雷,等. 石化废水双膜法深度处理工艺分析及优化研究[J]. 中国给水排水,2018,34(13):120-124.
|
|
YE Hongyu, CAI Xiaojian, CHEN Lei,et al. Analysis and optimization of double-membrane process for petrochemical wastewater advanced treatment[J]. China Water & Wastewater,2018,34(13):120-124.
|
57 |
|
|
WU Hao, ZHANG Panyue, JIANG Jianhong,et al. Application of reverse osmosis technology to the treatment and recycling of heavy metal wastewater[J]. Industrial Water Treatment, 2007, 27(6):6-9. doi: 10.11894/1005-829x.2007.27(6).6
|
58 |
SHENVI S S, ISLOOR A M, ISMAIL A F. A review on RO membrane technology:Developments and challenges[J]. Desalination, 2015, 368:10-26. doi: 10.1016/j.desal.2014.12.042
|
59 |
ZHANG Ruijun, TIAN Jiayu, GAO Shanshan,et al. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration?[J]. Journal of Materials Chemistry A, 2020, 8(18):8831-8847. doi: 10.1039/d0ta02510k
|
60 |
XIAO Huifang, CHU Changhui, XU Wangting,et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. Journal of Membrane Science, 2019, 586:44-52. doi: 10.1016/j.memsci.2019.05.038
|
61 |
BANO S, MAHMOOD A, KIM S J,et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. Journal of Materials Chemistry A, 2015, 3(5):2065-2071. doi: 10.1039/c4ta03607g
|
62 |
SHAN Linglong, GU Jiahui, FAN Hongwei,et al. Microphase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(51):44820-44827. doi: 10.1021/acsami.7b14017
|
63 |
SURWADE S P, SMIRNOV S N, VLASSIOUK I V,et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5):459-464. doi: 10.1038/nnano.2015.37
|
64 |
KONG Fanxin, YANG Zhiyun, YUE Liping,et al. Nanofiltration membrane with substrate incorporated amine-functionalized graphene oxide for enhanced petrochemical wastewater and shale gas produced water desalination[J]. Desalination, 2021, 517:115246. doi: 10.1016/j.desal.2021.115246
|
65 |
MELO M, SCHLUTER H, FERREIRA J,et al. Advanced performance evaluation of a reverse osmosis treatment for oilfield produced water aiming reuse[J]. Desalination, 2010, 250(3):1016-1018. doi: 10.1016/j.desal.2009.09.095
|
66 |
DORAN G F, CARINI F H, FRUTH D A,et al. Evaluation of technologies to treat oil field produced water to drinking water or reuse quality[C]//Spe Technical Conference & Exhibition, 1997. DOI: 10.2118/38830-MS .
|
67 |
|
|
SHEN Hongyuan, LI Zhongcai. Advanced treatment and reuse technology of wastewater from refinery industry and its running practice[J]. Industrial Water Treatment, 2015, 35(8):110-112. doi: 10.11894/1005-829x.2015.35(8).110
|
68 |
SALIHA B, PATRICK F, ANTHONY S. Investigating nanofiltration of multi-ionic solutions using the steric,electric and dielectric exclusion model[J]. Chemical Engineering Science, 2009, 64(17):3789-3798. doi: 10.1016/j.ces.2009.05.020
|
69 |
ISMAIL A F, MATSUURA T. Progress in transport theory and characterization method of reverse osmosis(RO) membrane in past fifty years[J]. Desalination, 2018, 434:2-11. doi: 10.1016/j.desal.2017.09.028
|
70 |
YADAV D, KARKI S, INGOLE P G. Current advances and opportunities in the development of nanofiltration(NF) membranes in the area of wastewater treatment,water desalination,biotechnological and pharmaceutical applications[J]. Journal of Environmental Chemical Engineering, 2022, 10(4):108109. doi: 10.1016/j.jece.2022.108109
|
71 |
EPSZTEIN R, DUCHANOIS R M, RITT C L,et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6):426-436. doi: 10.1038/s41565-020-0713-6
|
72 |
LU Dan, YAO Zhikan, JIAO Lei,et al. Separation mechanism,selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2:100032. doi: 10.1016/j.advmem.2022.100032
|
73 |
ZHOU Dong, ZHU Lijing, FU Yinyi,et al. Development of lower cost seawater desalination processes using nanofiltration technologies:A review[J]. Desalination, 2015, 376:109-116. doi: 10.1016/j.desal.2015.08.020
|
74 |
FANG Wangxi, SHI Lei, WANG Rong. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430:129-139. doi: 10.1016/j.memsci.2012.12.011
|
75 |
GONZÁLEZ-MUÑOZ M J, RODRÍGUEZ M A, LUQUE S,et al. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration[J]. Desalination, 2006, 200(1/2/3):742-744. doi: 10.1016/j.desal.2006.03.498
|
76 |
TIAN Jiayu, ZHAO Xingrui, GAO Shanshan,et al. Progress in research and application of nanofiltration(NF) technology for brackish water treatment[J]. Membranes, 2021, 11(9):662. doi: 10.3390/membranes11090662
|
77 |
PARK S H, KIM J H, MOON S J,et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration[J]. Journal of Membrane Science, 2020, 598:117683. doi: 10.1016/j.memsci.2019.117683
|
78 |
潘振江,高学理,王铎,等. 双膜法深度处理油田采出水的现场试验研究[J]. 水处理技术,2010,36(1):86-90.
|
|
PAN Zhenjiang, GAO Xueli, WANG Duo,et al. Field test research on dual membrane process to advanced treatment of produced water[J]. Technology of Water Treatment,2010,36(1):86-90.
|
79 |
|
|
QIU Xiaoyun, LIU Zheng, WAN Guohui,et al. Treatment of RO concentrated water from refinery wastewater by nanofiltration[J] Environmental Protection of Chemical Industry, 2015, 35(4):386-390. doi: 10.3969/j.issn.1006-1878.2015.04.011
|
80 |
KONG Fanxin, SUN Guangdong, CHEN Jinfu,et al. Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment[J]. Separation and Purification Technology, 2018, 195:216-223. doi: 10.1016/j.seppur.2017.12.017
|
81 |
STRATHMANN H. Electrodialysis,a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3):268-288. doi: 10.1016/j.desal.2010.04.069
|
82 |
KORNGOLD E, ARONOV L, DALTROPHE N. Electrodialysis of brine solutions discharged from an RO plant[J]. Desalination, 2009, 242(1/2/3):215-227. doi: 10.1016/j.desal.2008.04.008
|
83 |
ZHANG Yang, GHYSELBRECHT K, VANHERPE R,et al. RO concentrate minimization by electrodialysis:Techno-economic analysis and environmental concerns[J]. Journal of Environmental Management, 2012, 107:28-36. doi: 10.1016/j.jenvman.2012.04.020
|
84 |
KHAN M I, ZHENG Chunlei, MONDAL A N,et al. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis[J]. Desalination, 2017, 402:10-18. doi: 10.1016/j.desal.2016.09.019
|
85 |
ZHANG Shanshan, WANG Junfeng, SHEN Fei,et al. Efficient removal of metal ions from the ionic liquid aqueous solution by selective electrodialysis[J]. Separation and Purification Technology, 2022, 295:121322. doi: 10.1016/j.seppur.2022.121322
|
86 |
MARDER L, BERNARDES A M, ZOPPAS FERREIRA J. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system[J]. Separation and Purification Technology, 2004, 37(3):247-255. doi: 10.1016/j.seppur.2003.10.011
|
87 |
DOS SANTOS C S L, MIRANDA REIS M H, CARDOSO V L,et al. Electrodialysis for removal of chromium(Ⅵ) from effluent:Analysis of concentrated solution saturation[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103380. doi: 10.1016/j.jece.2019.103380
|
88 |
GHERASIM C V, KŘIVČÍK J, MIKULÁŠEK P. Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions[J]. Chemical Engineering Journal, 2014, 256:324-334. doi: 10.1016/j.cej.2014.06.094
|
89 |
BHADJA V, TRIVEDI J S, CHATTERJEE U. Efficacy of polyethylene Interpolymer membranes for fluoride and arsenic ion removal during desalination of water via electrodialysis[J]. RSC Advances, 2016, 6(71):67118-67126. doi: 10.1039/c6ra11450d
|
90 |
LIAO Junbin, CHEN Quan, PAN Nengxiu,et al. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis[J]. Separation and Purification Technology, 2020, 242:116793. doi: 10.1016/j.seppur.2020.116793
|
91 |
CHEN Fuqiang, CHI Yongzhi, ZHANG Mengyi,et al. Removal of heat stable salts from N-methyldiethanolamine wastewater by anion exchange resin coupled three-compartment electrodialysis[J]. Separation and Purification Technology, 2020, 242:116777. doi: 10.1016/j.seppur.2020.116777
|
92 |
HERRERO-GONZALEZ M, DIAZ-GURIDI P, DOMINGUEZ-RAMOS A,et al. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2020, 242:116785. doi: 10.1016/j.seppur.2020.116785
|
93 |
GUO Haicheng, XIAO Lan, YU Shuili,et al. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis[J]. Desalination, 2014, 346:46-53. doi: 10.1016/j.desal.2014.05.010
|
94 |
VENZKE C D, GIACOBBO A, FERREIRA J Z,et al. Increasing water recovery rate of membrane hybrid process on the petrochemical wastewater treatment[J]. Process Safety and Environmental Protection, 2018, 117:152-158. doi: 10.1016/j.psep.2018.04.023
|
95 |
|
|
ZHU Anmin, LI Liang, TENG Houkai,et al. Experimental research on the advanced treatment of refining wastewater and reuse by electrodialysis process[J]. Industrial Water Treatment, 2015, 35(11):63-66. doi: 10.11894/1005-829x.2015.35(11).063
|
96 |
LIU S Y, ZHANG G X, HAN M Y,et al. Freshwater costs of seawater desalination:Systems process analysis for the case plant in China[J]. Journal of Cleaner Production, 2019, 212:677-686. doi: 10.1016/j.jclepro.2018.12.012
|
97 |
LIN Saisai, ZHAO Haiyang, ZHU Liping,et al. Seawater desalination technology and engineering in China:A review[J]. Desalination, 2021, 498:114728. doi: 10.1016/j.desal.2020.114728
|
98 |
SMITH K, LIU Shuming, LIU Ying,et al. Can China reduce energy for water?A review of energy for urban water supply and wastewater treatment and suggestions for change[J]. Renewable and Sustainable Energy Reviews, 2018, 91:41-58. doi: 10.1016/j.rser.2018.03.051
|
99 |
PANAGOPOULOS A. Brine management(saline water & wastewater effluents):Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge(MLD & ZLD) desalination systems[J]. Chemical Engineering and Processing-Process Intensification, 2022, 176:108944. doi: 10.1016/j.cep.2022.108944
|
100 |
|
|
LUO Jinhua. Final disposal technology of concentrated brine in zero discharge of industrial wastewater[J]. Chemical Engineering Design Communications, 2017, 43(4):217. doi: 10.3969/j.issn.1003-6490.2017.04.194
|
101 |
LEE W. Zero-liquid discharge(ZLD) technology for resource recovery from wastewater:A review[J]. Science of the Total Environment, 2019, 681:551-563. doi: 10.1016/j.scitotenv.2019.05.062
|
102 |
SUBRAMANI A, JACANGELO J G. Treatment technologies for reverse osmosis concentrate volume minimization:A review[J]. Separation and Purification Technology, 2014, 122:472-489. doi: 10.1016/j.seppur.2013.12.004
|
103 |
RANDALL D G, NATHOO J. A succinct review of the treatment of reverse osmosis brines using freeze crystallization[J]. Journal of Water Process Engineering, 2015, 8:186-194. doi: 10.1016/j.jwpe.2015.10.005
|
104 |
LORAIN O, THIEBAUD P, BADORC E,et al. Potential of freezing in wastewater treatment:Soluble pollutant applications[J]. Water Research, 2001, 35(2):541-547. doi: 10.1016/s0043-1354(00)00287-6
|
105 |
RAHMAN M S, AHMED M, CHEN X D. Freezing melting process and desalination:Review of present status and future prospects[J]. International Journal of Nuclear Desalination, 2007, 2(3):253. doi: 10.1504/ijnd.2007.013549
|
106 |
PANAGOPOULOS A, HARALAMBOUS K J. Minimal liquid discharge(MLD) and zero liquid discharge(ZLD) strategies for wastewater management and resource recovery:Analysis,challenges and prospects[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104418. doi: 10.1016/j.jece.2020.104418
|
107 |
PANAGOPOULOS A, GIANNIKA V. Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge(MLD/ZLD) strategies[J]. Journal of Environmental Management, 2022, 324:116239. doi: 10.1016/j.jenvman.2022.116239
|
108 |
LIU Gui, ZHAO Zhongwei, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines:A review[J]. Hydrometallurgy, 2019, 187:81-100. doi: 10.1016/j.hydromet.2019.05.005
|
109 |
|
|
XU Jiahai, WAN Shuchun, WANG Nailin,et al. Treatment and zero discharge reuse of petrochemical high salt wastewater[J]. Industrial Water Treatment, 2020, 40(5):122-125. doi: 10.11894/iwt.2020-0313
|
110 |
吴雅琴,杨波,张高旗,等. 膜集成技术在高盐废水资源化工程中的应用[J]. 水处理技术,2019,45(4):131-134.
|
|
WU Yaqin, YANG Bo, ZHANG Gaoqi,et al. Application of membrane integrated technology in high salinity wastewater recycling project[J]. Technology of Water Treatment,2019,45(4):131-134.
|
111 |
邱丽娜. 大庆炼化公司炼油污水零排放[N]. 黑龙江经济报,2007-10-25(002).
|
|
QIU Lina. Zero discharge of refinery sewage from Daqing Refining and Chemical Company[N]. Heilongjiang Economic Daily,2007-10-25(002).
|
112 |
佚名. 济南炼化运用双膜法治污实现污水零排放[J]. 膜科学与技术,2010,30(1):72.
|
|
Anonymous. Uses double membrane method to control pollution and realize zero discharge of sewage[J]. Membrane Science and Technology,2010,30(1):72.
|
113 |
何山,马迪. 大庆油田实现含油污水地表零排放[N]. 大庆日报,2010-09-22(C04).
|