1 |
|
|
|
2 |
BAALOUDJ O, ASSADI I, NASRALLAH N,et al. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis:A review[J]. Journal of Water Process Engineering, 2021, 42:102089. doi: 10.1016/j.jwpe.2021.102089
|
3 |
KOVALAKOVA P, CIZMAS L, MCDONALD T J,et al. Occurrence and toxicity of antibiotics in the aquatic environment:A review[J]. Chemosphere, 2020, 251:126351. doi: 10.1016/j.chemosphere.2020.126351
|
4 |
KEMPF K, SCHMITT F, BILITEWSKI U,et al. Synthesis,stereochemical assignment,and bioactivity of the Penicillium metabolites penicillenols B 1 and B 2 [J]. Tetrahedron, 2015, 71(31):5064-5068. doi: 10.1016/j.tet.2015.05.116
|
5 |
ZHANG Qianqian, YING Guangguo, PAN Changgui,et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis,multimedia modeling,and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782. doi: 10.1021/acs.est.5b00729
|
6 |
MARTIN-LAURENT F, TOPP E, BILLET L,et al. Environmental risk assessment of antibiotics in agroecosystems:Ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum[J]. Environmental Science and Pollution Research, 2019, 26(18):18930-18937. doi: 10.1007/s11356-019-05122-0
|
7 |
PAZDA M, KUMIRSKA J, STEPNOWSKI P,et al. Antibiotic resistance genes identified in wastewater treatment plant systems:A review[J]. Science of the Total Environment, 2019, 697:134023. doi: 10.1016/j.scitotenv.2019.134023
|
8 |
ZHANG Rui, YANG Shu, AN Yuwei,et al. Antibiotics and antibiotic resistance genes in landfills:A review[J]. Science of the Total Environment, 2022, 806:150647. doi: 10.1016/j.scitotenv.2021.150647
|
9 |
Jia LÜ, YANG Linsheng, ZHANG Lan,et al. Antibiotics in soil and water in China:A systematic review and source analysis[J]. Environmental Pollution, 2020, 266:115147. doi: 10.1016/j.envpol.2020.115147
|
10 |
KLEIN E Y, VAN BOECKEL T P, MARTINEZ E M,et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15):3463-3470. doi: 10.1073/pnas.1717295115
|
11 |
WU Qiangshun, YANG Hanpei, KANG Li,et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range:Acceleration of Fe(Ⅱ)/Fe(Ⅲ) cycle under visible light irradiation[J]. Applied Catalysis B:Environmental, 2020, 263:118282. doi: 10.1016/j.apcatb.2019.118282
|
12 |
XU Liangpang, LI Hui, MITCH W A,et al. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a Lewis-base catalyzed alkalization mechanism[J]. Environmental Science & Technology, 2019, 53(2):710-718. doi: 10.1021/acs.est.8b06068
|
13 |
ALAHABADI A, HOSSEINI-BANDEGHARAEI A, MOUSSAVI G,et al. Comparing adsorption properties of NH 4Cl-modified activated carbon towards chlortetracycline antibiotic with those of commercial activated carbon[J]. Journal of Molecular Liquids, 2017, 232:367-381. doi: 10.1016/j.molliq.2017.02.077
|
14 |
|
|
YIN Fubin, ZHAN Yuanhang, YUE Caide,et al. Research progress on membrane technology for treatment of husbandry biogas slurry and wastewater[J]. Journal of Agro-Environment Science, 2021, 40(11):2335-2341. doi: 10.11654/jaes.2021-1118
|
15 |
HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:A review[J]. Journal of Environmental Management, 2011, 92(10):2304-2347. doi: 10.1016/j.jenvman.2011.05.023
|
16 |
WEI Zhidong, LIU Junying, SHANGGUAN Wenfeng. A review on photocatalysis in antibiotic wastewater:Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10):1440-1450. doi: 10.1016/s1872-2067(19)63448-0
|
17 |
WU Suqing, HU Yunhang. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics[J]. Chemical Engineering Journal, 2021, 409:127739. doi: 10.1016/j.cej.2020.127739
|
18 |
LIU Dong, LI Huijun, GAO Ranpeng,et al. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO 2 photoelectrode[J]. Journal of Hazardous Materials, 2021, 406:124309. doi: 10.1016/j.jhazmat.2020.124309
|
19 |
LI Yaping, SUN Xianglin, TANG Yiming,et al. Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO 4 nanocomposite[J]. Materials Chemistry and Physics, 2021, 271:124871. doi: 10.1016/j.matchemphys.2021.124871
|
20 |
MA Enhui, SUN Guolong, DUAN Fanglin,et al. Visible-light-responsive Z-scheme heterojunction MoS 2 NTs/CuInS 2 QDs photoanode for enhanced photoelectrocatalytic degradation of tetracycline[J]. Applied Materials Today, 2022, 28:101504. doi: 10.1016/j.apmt.2022.101504
|
21 |
MAFA P J, KUVAREGA A T, MAMBA B B,et al. Photoelectrocatalytic degradation of sulfamethoxazole on g-C 3N 4/BiOI/EG p-n heterojunction photoanode under visible light irradiation[J]. Applied Surface Science, 2019, 483:506-520. doi: 10.1016/j.apsusc.2019.03.281
|
22 |
YU Chengze, HOU Jiaqi, ZHANG Bin,et al. In-situ electrodeposition synthesis of Z-scheme rGO/g-C 3N 4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system[J]. Journal of Environmental Management, 2022, 308:114615. doi: 10.1016/j.jenvman.2022.114615
|
23 |
MAMBA G, MAFA P J, MUTHURAJ V,et al. Heterogeneous advanced oxidation processes over stoichiometric ABO 3 perovskite nanostructures[J]. Materials Today Nano, 2022, 18:100184. doi: 10.1016/j.mtnano.2022.100184
|
24 |
GE Mingzheng, CAO Chunyan, HUANG Jianying,et al. Synthesis,modification,and photo/photoelectrocatalytic degradation applications of TiO 2 nanotube arrays:A review[J]. Nanotechnology Reviews, 2016, 5(1):75-112. doi: 10.1515/ntrev-2015-0049
|
25 |
|
|
CHENG Xiang, BI Yingpu. Research advancement of the TiO 2 nanoarrays photoanode for photoelectrochemical water splitting[J]. Journal of Molecular Catalysis(China), 2020, 34(4):341-365. doi: 10.3724/sp.j.7102727948
|
26 |
JIA Meiying, YANG Zhaohui, XU Haiyin,et al. Integrating N and F co-doped TiO 2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine[J]. Chemical Engineering Journal, 2020, 388:124388. doi: 10.1016/j.cej.2020.124388
|
27 |
PAL D, SARKAR A, GHOSH N G,et al. Integration of LaCo(OH) x photo-electrocatalyst and plasmonic gold nanoparticles with Sb-doped TiO 2 nanorods for photoelectrochemical water oxidation[J]. ACS Applied Nano Materials, 2021, 4(6):6111-6123. doi: 10.1021/acsanm.1c00928
|
28 |
GAN Ling, WU Yifan, SONG Haiou,et al. Self-doped TiO 2 nanotube arrays for electrochemical mineralization of phenols[J]. Chemosphere, 2019, 226:329-339. doi: 10.1016/j.chemosphere.2019.03.135
|
29 |
HONG S P, KIM S, KIM N,et al. A short review on electrochemically self-doped TiO 2 nanotube arrays:Synthesis and applications[J]. Korean Journal of Chemical Engineering, 2019, 36(11):1753-1766. doi: 10.1007/s11814-019-0365-0
|
30 |
SONG Rui, CHI Haibo, MA Qiuling,et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO 2-based photoelectrocatalysis[J]. Journal of the American Chemical Society, 2021, 143(34):13664-13674. doi: 10.1021/jacs.1c05008
|
31 |
JIA Meiying, YANG Zhaohui, XIONG Weiping,et al. Magnetic heterojunction of oxygen-deficient Ti 3+-TiO 2 and Ar-Fe 2O 3 derived from metal-organic frameworks for efficient peroxydisulfate(PDS) photo-activation[J]. Applied Catalysis B:Environmental, 2021, 298:120513. doi: 10.1016/j.apcatb.2021.120513
|
32 |
FAN Haiyang, YI Guiyun, ZHANG Zhengting,et al. Fabrication of Ag particles deposited BiVO 4 photoanode for significantly efficient visible-light driven photoelectrocatalytic degradation of β-naphthol[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107221. doi: 10.1016/j.jece.2022.107221
|
33 |
FENG Wenjian, LIN Liangyou, LI Haijin,et al. Hydrogenated TiO 2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2017, 42(7):3938-3946. doi: 10.1016/j.ijhydene.2016.10.087
|
34 |
SUN Bojing, ZHOU Wei, LI Haoze,et al. Magnetic Fe 2O 3/mesoporous black TiO 2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation[J]. Applied Catalysis B:Environmental, 2018, 221:235-242. doi: 10.1016/j.apcatb.2017.09.023
|
35 |
JIA Yuhong, YE Long, KANG Xi,et al. Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO 2 nanotube arrays[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 328:225-232. doi: 10.1016/j.jphotochem.2016.05.023
|
36 |
HE Shi, YAN Cheng, CHEN Xiaozhen,et al. Construction of core-shell heterojunction regulating α-Fe 2O 3 layer on CeO 2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis[J]. Applied Catalysis B:Environmental, 2020, 276:119138. doi: 10.1016/j.apcatb.2020.119138
|
37 |
WANG Keyi, LIANG Gaozhou, WAQAS M,et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode[J]. Separation and Purification Technology, 2020, 236:116301. doi: 10.1016/j.seppur.2019.116301
|
38 |
HU Qi, CAO Jiao, YANG Zhaohui,et al. Fabrication of Fe-doped cobalt zeolitic imidazolate framework derived from Co(OH) 2 for degradation of tetracycline via peroxymonosulfate activation[J]. Separation and Purification Technology, 2021, 259:118059. doi: 10.1016/j.seppur.2020.118059
|
39 |
LUO Ting, FENG Haopeng, TANG Lin,et al. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe 2O 3:Mechanism and degradation pathway[J]. Chemical Engineering Journal, 2020, 382:122970. doi: 10.1016/j.cej.2019.122970
|
40 |
HAO Zixuan, HOU Wenxin, FANG Chen,et al. Sulfite activation by cobaltosic oxide nanohydrangeas for tetracycline degradation:Performance,degradation pathways and mechanism[J]. Journal of Hazardous Materials, 2022, 439:129618. doi: 10.1016/j.jhazmat.2022.129618
|
41 |
CHEN Yanxi, YIN Renli, ZENG Lixi,et al. Insight into the effects of hydroxyl groups on the rates and pathways of tetracycline antibiotics degradation in the carbon black activated peroxydisulfate oxidation process[J]. Journal of Hazardous Materials, 2021, 412:125256. doi: 10.1016/j.jhazmat.2021.125256
|
42 |
DONG Haoran, JIANG Zhao, ZHANG Cong,et al. Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 513:117-125. doi: 10.1016/j.jcis.2017.11.021
|
43 |
ZENG Zhiping, YAN Yibo, CHEN Jie,et al. Boosting the photocatalytic ability of Cu 2O nanowires for CO 2 conversion by MXene quantum dots[J]. Advanced Functional Materials, 2019, 29(2):1806500. doi: 10.1002/adfm.201806500
|
44 |
LI Xibao, KANG Bangbang, DONG Fan,et al. Enhanced photocatalytic degradation and H 2/H 2O 2 production performance of S-pCN/WO 2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81:105671. doi: 10.1016/j.nanoen.2020.105671
|