1 |
CAO Ying, QIU Wei, LI Juan,et al. Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2 [J]. Science of the Total Environment,2021,765:142762.
|
2 |
JUNG B, NICOLA R, BATCHELOR B,et al. Effect of low- and medium-pressure Hg UV irradiation on bromate removal in advanced reduction process[J]. Chemosphere, 2014, 117:663-672. doi: 10.1016/j.chemosphere.2014.09.086
|
3 |
XIE Bihuang, SHAN Chao, XU Zhe,et al. One-step removal of Cr(Ⅵ) at alkaline pH by UV/sulfite process:Reduction to Cr(Ⅲ) and in situ Cr(Ⅲ) precipitation[J]. Chemical Engineering Journal, 2017, 308:791-797. doi: 10.1016/j.cej.2016.09.123
|
4 |
SUN Min, ZHOU Hao, XU Bei,et al. Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO 3 2- process[J]. Environmental Science and Pollution Research, 2018, 25(8):7443-7453. doi: 10.1007/s11356-017-1024-9
|
5 |
VELLANKI B P, BATCHELOR B, ABDEL-WAHAB A. Advanced reduction processes:A new class of treatment processes[J]. Environmental Engineering Science, 2013, 30(5):264-271. doi: 10.1089/ees.2012.0273
|
6 |
YU Xingyue, CABOOTER D, DEWIL R. Effects of process variables and kinetics on the degradation of 2,4-dichlorophenol using advanced reduction processes(ARP)[J]. Journal of Hazardous Materials, 2018, 357:81-88. doi: 10.1016/j.jhazmat.2018.05.049
|
7 |
LI Xuchun, MA Jun, LIU Guifang,et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process[J]. Environmental Science & Technology, 2012, 46(13):7342-7349. doi: 10.1021/es3008535
|
8 |
SONG Ge, SU Pei, ZHANG Qizhan,et al. Revisiting UV/sulfite exposed to air:A redox process for reductive dechlorination and oxidative mineralization[J]. Science of the Total Environment,2023,859(Pt 1):160246.
|
9 |
SIEFERMANN K R, ABEL B. The hydrated electron:A seemingly familiar chemical and biological transient[J]. Angewandte Chemie, 2011, 50(23):5264-5272. doi: 10.1002/anie.201006521
|
10 |
YU Xingyue, CABOOTER D, DEWIL R. Efficiency and mechanism of diclofenac degradation by sulfite/UV advanced reduction processes(ARPs)[J]. Science of the Total Environment,2019,688:65-74.
|
11 |
VELLANKI B P, BATCHELOR B. Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process[J]. Journal of Hazardous Materials, 2013, 262:348-356. doi: 10.1016/j.jhazmat.2013.08.061
|
12 |
FENNELL B D, MEZYK S P, MCKAY G. Critical review of UV-advanced reduction processes for the treatment of chemical contaminants in water[J]. ACS Environmental Au, 2022, 2(3):178-205. doi: 10.1021/acsenvironau.1c00042
|
13 |
WU Lijuan, YAN Xiaoke, YANG Lie,et al. Simultaneous efficient degradation and dechlorination of chloramphenicol using UV/sulfite reduction:Mechanisms and product toxicity[J]. Chemical Engineering Journal, 2023, 452:139161. doi: 10.1016/j.cej.2022.139161
|
14 |
LI Xuchun, FANG Jingyun, LIU Guifang,et al. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process[J]. Water Research, 2014, 62:220-228. doi: 10.1016/j.watres.2014.05.051
|
15 |
SUN Min, ZHOU Hao, XU Bei,et al. Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO 3 2- process[J]. Environmental Science and Pollution Research, 2018, 25(8):7443-7453. doi: 10.1007/s11356-017-1024-9
|
16 |
XIAO Qian, WANG Ting, YU Shuili,et al. Influence of UV lamp,sulfur(Ⅳ) concentration,and pH on bromate degradation in UV/sulfite systems:Mechanisms and applications[J]. Water Research, 2017, 111:288-296. doi: 10.1016/j.watres.2017.01.018
|
17 |
YU Keer, LI Xuchun, CHEN Liwei,et al. Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process[J]. Water Research, 2018, 129:357-364. doi: 10.1016/j.watres.2017.11.030
|
18 |
YANG Lie, HE Liuyang, XUE Jianming,et al. UV/SO 3 2– based advanced reduction processes of aqueous contaminants:Current status and prospects[J]. Chemical Engineering Journal, 2020, 397:125412. doi: 10.1016/j.cej.2020.125412
|
19 |
JUNG B, FARZANEH H, KHODARY A,et al. Photochemical degradation of trichloroethylene by sulfite-mediated UV irradiation[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):2194-2202. doi: 10.1016/j.jece.2015.07.026
|
20 |
SO H L, WANG Liwen, LIU Jianghui,et al. Insights into the degradation of diphenhydramine:An emerging SARS-CoV-2 medicine by UV/sulfite[J]. Separation and Purification Technology, 2022, 303:122193. doi: 10.1016/j.seppur.2022.122193
|
21 |
LIU Xu, YOON S, BATCHELOR B,et al. Degradation of vinyl chloride(VC) by the sulfite/UV advanced reduction process(ARP):Effects of process variables and a kinetic model[J]. Science of the Total Environment,2013,454/455:578-583.
|
22 |
WU Shaohua, SHEN Leyuan, LIN Yan,et al. Sulfite-based advanced oxidation and reduction processes for water treatment[J]. Chemical Engineering Journal, 2021, 414:128872. doi: 10.1016/j.cej.2021.128872
|
23 |
GU Yurong, LIU Tongzhou, ZHANG Qian,et al. Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process:Kinetics and associated toxicity[J]. Chemical Engineering Journal, 2017, 326:1125-1133. doi: 10.1016/j.cej.2017.05.156
|
24 |
HUANG Huahan, LIANG Xinrui, LI Qingsong,et al. High-performance reductive decomposition of trichloroacetamide by the vacuum-ultraviolet/sulfite process:Kinetics,mechanism and combined toxicity risk[J]. Water research. 2022, 225:119122. doi: 10.1016/j.watres.2022.119122
|
25 |
CUI Junkui, GAO Panpan, DENG Yang. Destruction of per- and polyfluoroalkyl substances(PFAS) with advanced reduction processes(ARPs):A critical review[J]. Environmental Science & Technology, 2020, 54(7):3752-3766. doi: 10.1021/acs.est.9b05565
|
26 |
QU Yan, ZHANG Chaojie, LI Fei,et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9):2939-2947. doi: 10.1016/j.watres.2010.02.019
|
27 |
FISCHER M, WARNECK P. Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution[J]. The Journal of Physical Chemistry, 1996, 100(37):15111-15117. doi: 10.1021/jp953236b
|
28 |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284. doi: 10.1063/1.555808
|
29 |
SEID M G, CHO K, HONG S W. UV/sulfite chemistry to reduce N-nitrosodimethylamine formation in chlor(am)inated water[J]. Water Research, 2020, 185:116243. doi: 10.1016/j.watres.2020.116243
|
30 |
YU Yanghai, FENG Liying, QIAO Junlian,et al. New insights into bromate removal by UV/sulfite process:Influencing factors,mechanism,and energy efficiency[J]. Journal of Water Process Engineering, 2022, 48:102917. doi: 10.1016/j.jwpe.2022.102917
|
31 |
YU Xingyue, GOCZE Z, CABOOTER D,et al. Efficient reduction of carbamazepine using UV-activated sulfite:Assessment of critical process parameters and elucidation of radicals involved[J]. Chemical Engineering Journal, 2021, 404:126403. doi: 10.1016/j.cej.2020.126403
|
32 |
HUANG Cunping, LINKOUS C A, ADEBIYI O,et al. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions[J]. Environmental Science & Technology, 2010, 44(13):5283-5288. doi: 10.1021/es903766w
|
33 |
MILH H, YU Xingyue, CABOOTER D,et al. Degradation of ciprofloxacin using UV-based advanced removal processes:Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes[J]. Science of the Total Environment,2021,764:144510.
|
34 |
张炳辉,龚思成,王研谛,等. 紫外/氯胺高级氧化工艺对水体微污染物降解和副产物控制的研究进展[J]. 净水技术,2023,42(S1):1-10.
|
|
ZHANG Binghui, GONG Sicheng, WANG Yandi,et al. Research progress on degradation of micro-pollutants and control of by-products in water by UV/chloramine advanced oxidation process[J]. Water Purification Technology,2023,42(S1):1-10.
|
35 |
WENK J, VON GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science & Technology, 2011, 45(4):1334-1340. doi: 10.1021/es102212t
|
36 |
GU Yurong, SONG Zi, DONG Zijun,et al. Efficient degradation and deiodination of iopamidol by UV/sulfite process:Assessment of typical process parameters and transformation paths[J]. Environment International, 2022, 167:107383. doi: 10.1016/j.envint.2022.107383
|
37 |
LI Chao, ZHENG Shanshan, LI Tiantian,et al. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways[J]. Water Research, 2019, 151:468-477. doi: 10.1016/j.watres.2018.12.010
|
38 |
REN Zhongfei, BERGMANN U, LEIVISKÄ T. Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process[J]. Water Research, 2021, 205:117676. doi: 10.1016/j.watres.2021.117676
|
39 |
JUNG B, SAFAN A, BOTLAGUDURU V S V,et al. Impact of natural organic matter on bromate removal in the sulfite/UV-L advanced reduction process[J]. Water Supply, 2017, 17:461-471. doi: 10.2166/ws.2016.150
|
40 |
BUXTON G V, GREENSTOCK C L, PHILLIPS HELMAN W,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(⋅OH/⋅O in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886. doi: 10.1063/1.555805
|
41 |
XIAO Qian, REN Yifei, YU Shuili. Pilot study on bromate reduction from drinking water by UV/sulfite systems:Economic cost comparisons,effects of environmental parameters and mechanisms[J]. Chemical Engineering Journal, 2017, 330:1203-1210. doi: 10.1016/j.cej.2017.08.071
|
42 |
WANG Zhen, LIU Wei, CHEN Hai,et al. Photoreductive degradation of CCl 4 by UV-Na 2SO 3:Influence of various factors,mechanism and application[J]. Environmental Technology, 2021, 42(2):217-226. doi: 10.1080/09593330.2019.1625957
|
43 |
GU Yurong, DONG Wenyi, LUO Cheng,et al. Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system[J]. Environmental Science & Technology, 2016, 50(19):10554-10561. doi: 10.1021/acs.est.6b03261
|
44 |
LIU Xu, YOON S, BATCHELOR B,et al. Photochemical degradation of vinyl chloride with an advanced reduction process(ARP):Effects of reagents and pH[J]. Chemical Engineering Journal, 2013, 215/216:868-875. doi: 10.1016/j.cej.2012.11.086
|
45 |
XIE Bihuang, LI Xuchun, HUANG Xianfeng,et al. Enhanced debromination of 4-bromophenol by the UV/sulfite process:Efficiency and mechanism[J]. Journal of Environmental Sciences(China), 2017, 54:231-238. doi: 10.1016/j.jes.2016.02.001
|
46 |
YAZDANBAKHSH A, ESLAMI A, MOUSSAVI G,et al. Photo-assisted degradation of 2,4,6-trichlorophenol by an advanced reduction process based on sulfite anion radical:Degradation,dechlorination and mineralization[J]. Chemosphere, 2018, 191:156-165. doi: 10.1016/j.chemosphere.2017.10.023
|
47 |
LIU Xu, VELLANKI B P, BATCHELOR B,et al. Degradation of 1,2-dichloroethane with advanced reduction processes(ARPs):Effects of process variables and mechanisms[J]. Chemical Engineering Journal, 2014, 237:300-307. doi: 10.1016/j.cej.2013.10.037
|
48 |
SONG Zhou, TANG Heqing, WANG Nan,et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system[J]. Journal of Hazardous Materials, 2013, 262:332-338. doi: 10.1016/j.jhazmat.2013.08.059
|
49 |
XIE Yanhua, REN Lulu, ZHU Xueqian,et al. Physical and chemical treatments for removal of perchlorate from water:A review[J]. Process Safety and Environmental Protection, 2018, 116:180-198. doi: 10.1016/j.psep.2018.02.009
|
50 |
XIAO Qian, YU Shuili, LI Lei,et al. An overview of advanced reduction processes for bromate removal from drinking water:Reducing agents,activation methods,applications and mechanisms[J]. Journal of Hazardous Materials, 2017, 324(Pt B):230-240. doi: 10.1016/j.jhazmat.2016.10.053
|
51 |
BOTLAGUDURU V S V, BATCHELOR B, ABDEL-WAHAB A. Application of UV-sulfite advanced reduction process to bromate removal[J]. Journal of Water Process Engineering, 2015, 5:76-82. doi: 10.1016/j.jwpe.2015.01.001
|
52 |
LIU Xiaowei, ZHANG Tuqiao, SHAO Yu. Aqueous bromate reduction by UV activation of sulfite[J]. CLEAN—Soil,Air,Water, 2014, 42(10):1370-1375. doi: 10.1002/clen.201300646
|
53 |
张正斌,颜勇,谢美萍,等. 紫外/亚硫酸盐体系去除溴酸盐的机制与效能[J]. 净水技术,2022,41(6):39-47.
|
|
ZHANG Zhengbin, YAN Yong, XIE Meiping,et al. Mechanism and efficiency of UV/sulfite system for bromate removal[J]. Water Purification Technology,2022,41(6):39-47.
|
54 |
NAWAZ S, SHAH N S, KHAN J ALI,et al. Removal efficiency and economic cost comparison of hydrated electron-mediated reductive pathways for treatment of bromate[J]. Chemical Engineering Journal, 2017, 320:523-531. doi: 10.1016/j.cej.2017.03.011
|
55 |
TAN Ling, MAO Ran, SU Peidong,et al. Efficient photochemical denitrification by UV/sulfite system:Mechanism and applications[J]. Journal of Hazardous Materials, 2021, 418:126448. doi: 10.1016/j.jhazmat.2021.126448
|
56 |
BARRERA-DÍAZ C E, LUGO-LUGO V, BILYEU B. A review of chemical,electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2012, 223/224:1-12. doi: 10.1016/j.jhazmat.2012.04.054
|
57 |
CAO Ying, LI Juan, ZHAO Yanxin,et al. Degradation of metoprolol by UV/sulfite as an advanced oxidation or reduction process:The significant role of oxygen[J]. Journal of Environmental Sciences(China), 2023, 128:107-116. doi: 10.1016/j.jes.2022.07.008
|
58 |
LIU Xiaowei, ZHANG Tuqiao, WANG Lili,et al. Hydrated electron-based degradation of atenolol in aqueous solution[J]. Chemical Engineering Journal, 2015, 260:740-748. doi: 10.1016/j.cej.2014.08.109
|
59 |
LIU Shenglan, FU Yongsheng, WANG Guangsheng,et al. Degradation of sulfamethoxazole by UV/sulfite in presence of oxygen:Efficiency,influence factors and mechanism[J]. Separation and Purification Technology, 2021, 268:118709. doi: 10.1016/j.seppur.2021.118709
|
60 |
DONG Shuangjing, DING Yangcheng, FENG Huajun,et al. Source preventing mechanism of florfenicol resistance risk in water by VUV/UV/sulfite advanced reduction pretreatment[J]. Water Research, 2023, 235:119876. doi: 10.1016/j.watres.2023.119876
|
61 |
CONG Yanqing, SHEN Lidong, WANG Baimei,et al. Efficient removal of Cr(Ⅵ) at alkaline pHs by sulfite/iodide/UV:Mechanism and modeling[J]. Water Research, 2022, 222:118919. doi: 10.1016/j.watres.2022.118919
|
62 |
LIU Zekun, CHEN Zhanghao, GAO Jinyu,et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite+iodide:Reaction mechanisms and system efficiencies[J]. Environmental Science & Technology, 2022, 56(6):3699-3709. doi: 10.1021/acs.est.1c07608
|
63 |
WANG Lili, LIU Xiaowei. Fast degradation of monochloroacetic acid by BiOI-enhanced UV/S(Ⅳ) process:Efficiency and mechanism[J]. Catalysts, 2019, 9(5):460. doi: 10.3390/catal9050460
|
64 |
ZHOU Danna, CHEN Long, LI Jinjun,et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters:A state-of-the-art minireview[J]. Chemical Engineering Journal, 2018, 346:726-738. doi: 10.1016/j.cej.2018.04.016
|
65 |
SHAO Binbin, DONG Hongyu, SUN Bo,et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants[J]. Environmental Science & Technology, 2019, 53(2):894-902. doi: 10.1021/acs.est.8b04990
|
66 |
CHEN Jie, RAO Dandan, DONG Hongyu,et al. The role of active manganese species and free radicals in permanganate/bisulfite process[J]. Journal of Hazardous Materials, 2020, 388:121735. doi: 10.1016/j.jhazmat.2019.121735
|
67 |
RAO Dandan, DONG Hongyu, LIAN Lushi,et al. New mechanistic insights into the transformation of reactive oxidizing species in an ultraviolet/sulfite system under aerobic conditions:Modeling and the impact of Mn(Ⅱ)[J]. ACS ES&T Water, 2021, 1(8):1785-1795. doi: 10.1021/acsestwater.1c00110
|
68 |
AZIZI S, SARKHOSH M, KAMIKA I,et al. Two-step chromium photo-precipitation in the sequential UV/sulfite/manganese dioxide processes:Efficiency,kinetic,energy-economic evaluation,and sludge survey[J]. Journal of King Saud University-Science, 2022, 34(3):101894. doi: 10.1016/j.jksus.2022.101894
|
69 |
CHEN Long, XUE Yunfei, LUO Tao,et al. Electrolysis-assisted UV/sulfite oxidation for water treatment with automatic adjustments of solution pH and dissolved oxygen[J]. Chemical Engineering Journal, 2021, 403:126278. doi: 10.1016/j.cej.2020.126278
|
70 |
FIROOZI M, HASHEMI M, NAROOIE M R,et al. Evaluation of phenol degradation rate using advanced oxidation/reduction process(AO/RP) in the presence of sulfite and zinc oxide under UV[J]. Optik, 2023, 279:170787. doi: 10.1016/j.ijleo.2023.170787
|
71 |
AZIZI S, SARKHOSH M, KAMIKA I,et al. Trimipramine photo-degradation in the photo-catalyst baffled reactor’s UV/sulfite/ZnO redox reaction system[J]. Arabian Journal for Science and Engineering, 2023, 48(12):16281-16292. doi: 10.1007/s13369-023-08145-5
|
72 |
DENG Wei, ZHAO Huilei, PAN Fuping,et al. Visible-light-driven photocatalytic degradation of organic water pollutants promoted by sulfite addition[J]. Environmental Science & Technology, 2017, 51(22):13372-13379. doi: 10.1021/acs.est.7b04206
|