| 1 | Mantzavinos D ,  Kassinos D ,  Parsons S A .  Applications of advanced oxidation processes in wastewater treatment[J]. Water Research, 2009, 43 (16): 3901. doi: 10.1016/j.watres.2009.08.024    
																																					URL
 | 
																													
																						| 2 | Wu Yining ,  Zhao Xin ,  Jin Min , et al.  Copper removal and microbial community analysis in single-chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253, 372- 377. doi: 10.1016/j.biortech.2018.01.046
 | 
																													
																						| 3 | Xu Fei ,  Cao Fuqian ,  Kong Qiang , et al.  Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486. doi: 10.1016/j.cej.2018.02.003
 | 
																													
																						| 4 | Wu Di ,  Yi Xiaoyun ,  Tang Rong , et al.  Single microbial fuel cell reactor for coking wastewater treatment:Simultaneous carbon and nitrogen removal with zero alkaline consumption[J]. Science of the Total Environment, 2018, 621, 497- 506. doi: 10.1016/j.scitotenv.2017.11.262
 | 
																													
																						| 5 | Chae K J ,  Choi M J ,  Lee J W , et al.  Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresource Technology, 2009, 100 (14): 3518- 3525. doi: 10.1016/j.biortech.2009.02.065
 | 
																													
																						| 6 | Rao J R ,  Richter G J ,  von Sturm F , et al.  The performance of glucose electrodes and the characteristics of different biofuel cell constructions[J]. Bioelectrochemistry and Bioenergetics, 1976, 3 (1): 139- 150. doi: 10.1016/0302-4598(76)85014-3
 | 
																													
																						| 7 | Logan B E ,  Regan J M .  Microbial fuel cells:challenges and applications[J]. Environmental Science & Technology, 2006, 40 (17): 5172- 5180. URL
 | 
																													
																						| 8 | Huang Yuelong ,  He Zhen ,  Mansfeld F .  Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry, 2010, 79 (2): 261- 264. doi: 10.1016/j.bioelechem.2010.03.009
 | 
																													
																						| 9 | Rinaldi A ,  Mecheri B ,  Garavaglia V , et al.  Engineering materials and biology to boost performance of microbial fuel cells:a critical review[J]. Energy & Environmental Science, 2008, 1 (4): 417. | 
																													
																						| 10 | Schroder U .  Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Physical Chemistry Chemical Physics, 2007, 9 (21): 2619- 2629. doi: 10.1039/B703627M
 | 
																													
																						| 11 | Zhou Minghua ,  Chi Meiling ,  Luo Jianmei , et al.  An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196 (10): 4427- 4435. doi: 10.1016/j.jpowsour.2011.01.012    
																																					URL
 | 
																													
																						| 12 | Yang E ,  Chae K J ,  Kim I S .  Comparison of different semipermeable membranes for power generation and water flux in osmotic microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (8): 2305- 2312. URL
 | 
																													
																						| 13 | Wei Jincheng ,  Liang Peng ,  Huang Xia .  Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102 (20): 9335- 9344. doi: 10.1016/j.biortech.2011.07.019    
																																					URL
 | 
																													
																						| 14 | Mohanakrishna G ,  Abu-Reesh I M ,  Kondaveeti S , et al.  Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253, 16- 21. doi: 10.1016/j.biortech.2018.01.005
 | 
																													
																						| 15 | Mohamed H O ,  Abdelkareem M A ,  Obaid M , et al.  Cobalt oxidessheathed cobalt nano flakes to improve surface properties of carbonaceous electrodes utilized in microbial fuel cells[J]. Chemical Engineering Journal, 2017, 326, 497- 506. doi: 10.1016/j.cej.2017.05.166
 | 
																													
																						| 16 | Ji Guangyong ,  Silver S .  Bacterial resistance mechanisms for heavy metals of environmental concern[J]. Journal of Industrial Microbiology, 1995, 14 (2): 61- 75. doi: 10.1007/BF01569887
 | 
																													
																						| 17 | Kim J R ,  Min B ,  Logan B E .  Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68 (1): 23- 30. doi: 10.1007/s00253-004-1845-6    
																																					URL
 | 
																													
																						| 18 | Mohamed H O ,  Obaid M ,  Poo K M , et al.  Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349, 800- 807. doi: 10.1016/j.cej.2018.05.138
 | 
																													
																						| 19 | Lv Z ,  Xie Daohai ,  Yue Xianjun , et al.  Ruthenium oxide-coated carbon felt electrode:a highly active anode for microbial fuel cell applications[J]. Journal of Power Sources, 2012, 210, 26- 31. doi: 10.1016/j.jpowsour.2012.02.109    
																																					URL
 | 
																													
																						| 20 | Alatraktchi F A ,  Zhang Yifeng ,  Angelidaki I .  Nanomodification of the electrodes in microbial fuel cell:Impact of nanoparticle density on electricity production and microbial community[J]. Applied Energy, 2014, 116, 216- 222. doi: 10.1016/j.apenergy.2013.11.058    
																																					URL
 | 
																													
																						| 21 | Jia Xiuqin ,  He Zaihua ,  Zhang Xin , et al.  Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell[J]. Synthetic Metals, 2016, 215, 170- 175. doi: 10.1016/j.synthmet.2016.02.015
 | 
																													
																						| 22 | Zeng Lizhen ,  Zhang Wenguang ,  Xia Pan , et al.  Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 102, 351- 356. doi: 10.1016/j.bios.2017.11.046
 | 
																													
																						| 23 | Zhang Song ,  Su Wei ,  Wang Xiaojing , et al.  Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogendoped carbon nanotube nanopolyhedra as advanced electrocatalyst forhigh-performance of activated carbon air-cathode microbial fuel cell[J]. Biosensors & Bioelectronics, 2019, 127, 181- 187. | 
																													
																						| 24 | Tang Jiahuan ,  Yuan Yong ,  Liu Ting , et al.  High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells[J]. Journal of Power Sources, 2015, 274, 170- 176. doi: 10.1016/j.jpowsour.2014.10.035
 | 
																													
																						| 25 | Mehdinia A ,  Ziaei E ,  Jabbari A .  Multi-walled carbon nanotube/SnO2 nanocomposite:a novel anode material for microbial fuel cells[J]. Electrochimica Acta, 2014, 130, 512- 518. doi: 10.1016/j.electacta.2014.03.011    
																																					URL
 | 
																													
																						| 26 | Yang Jiawei ,  Cheng Shaoan ,  Sun Yi , et al.  Improving the power generation of microbial fuel cells by modifying the anode with singlewall carbon nanohorns[J]. Biotechnology Letters, 2017, 39 (10): 1515- 1520. doi: 10.1007/s10529-017-2384-4
 | 
																													
																						| 27 | Hindatu Y ,  Annuar M S M ,  Subramaniam R , et al.  Medium-chainlength poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2017, 40 (6): 919- 928. doi: 10.1007/s00449-017-1756-4
 | 
																													
																						| 28 | Sonawane J M ,  Al-Saadi S ,  Singh Raman R K , et al.  Exploring the use of polyaniline-modified stainless steel plates as low-cost, high performance anodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 268, 484- 493. doi: 10.1016/j.electacta.2018.01.163
 | 
																													
																						| 29 | Ouis M ,  Kameche M ,  Innocent C , et al.  Electro-polymerization of pyrrole on graphite electrode:enhancement of electron transfer in bioanode of microbial fuel cell[J]. Polymer Bulletin, 2018, 75 (2): 669- 684. doi: 10.1007/s00289-017-2048-5
 | 
																													
																						| 30 | Pu Kaibo ,  Ma Qian ,  Cai Wenfang , et al.  Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J]. Biochemical Engineering Journal, 2018, 132, 255- 261. doi: 10.1016/j.bej.2018.01.018
 | 
																													
																						| 31 | Rikame S S ,  Mungray A A ,  Mungray A K .  Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal[J]. Electrochimica Acta, 2018, 275, 8- 17. doi: 10.1016/j.electacta.2018.04.141
 | 
																													
																						| 32 | Wu Gaoming ,  Bao Han ,  Xia Zheng , et al.  Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells[J]. Journal of Power Sources, 2018, 384, 86- 92. doi: 10.1016/j.jpowsour.2018.02.045
 | 
																													
																						| 33 | Liao Zhihong ,  Sun Jianzhong ,  Sun Dezhen , et al.  Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells[J]. Bioresource Technology, 2015, 192, 831- 834. doi: 10.1016/j.biortech.2015.05.105
 | 
																													
																						| 34 | Mishra P ,  Jain R .  Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41 (47): 22394- 22405. doi: 10.1016/j.ijhydene.2016.09.020
 | 
																													
																						| 35 | Khilari S ,  Pandit S ,  Varanasi J L , et al.  Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell[J]. ACS Applied Materials & Interfaces, 2015, 7 (37): 20657- 20666. URL
 | 
																													
																						| 36 | Hou Junxian ,  Liu Zhongliang ,  Li Yanxia , et al.  A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015, 38 (5): 881- 888. doi: 10.1007/s00449-014-1332-0
 | 
																													
																						| 37 | Chang S H ,  Huang B Y ,  Wan Tinghao , et al.  Surface modification of carbon cloth anodes for microbial fuel cells using atmospheric-pressure plasma jet processed reduced graphene oxides[J]. RSC Advances, 2017, 7 (89): 56433- 56439. doi: 10.1039/C7RA11914C
 | 
																													
																						| 38 | Yang Na ,  Ren Yueping ,  Li Xiufen , et al.  Effect of graphene-graphene oxide modified anode on the performance of microbial fuel cell[J]. Nanomaterials, 2016, 6 (9): 174. doi: 10.3390/nano6090174
 | 
																													
																						| 39 | Yang Xiaoshuang ,  Ma Xiaoxiao ,  Wang Kai , et al.  Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode[J]. Electrochimica Acta, 2016, 210, 846- 853. doi: 10.1016/j.electacta.2016.05.215
 | 
																													
																						| 40 | Hidalgo D ,  Tommasi T ,  Bocchini S , et al.  Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells[J]. Energy, 2016, 99, 193- 201. doi: 10.1016/j.energy.2016.01.039
 | 
																													
																						| 41 | Zhao Yu ,  Ma Yan ,  Li Ting , et al.  Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells[J]. RSC Advances, 2018, 8 (4): 2059- 2064. doi: 10.1039/C7RA12923H
 | 
																													
																						| 42 | Zeng Lizhen ,  Zhao Shaofei ,  He Miao .  Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells[J]. Journal of Power Sources, 2018, 376, 33- 40. doi: 10.1016/j.jpowsour.2017.11.071
 | 
																													
																						| 43 | Chen Qin ,  Pu Wenhong ,  Hou Huijie , et al.  Activated microporousmesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249, 567- 573. doi: 10.1016/j.biortech.2017.09.086
 | 
																													
																						| 44 | Huang Zhe ,  Gong A ,  Hou Dianxun , et al.  A conductive wood membrane anode improves effluent quality of microbial fuel cells[J]. Environmental Science:Water Research & Technology, 2017, 3 (5): 940- 946. URL
 | 
																													
																						| 45 | Chen Shanshan ,  Tang Jiahuan ,  Jing Xianyue , et al.  A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting[J]. Electrochimica Acta, 2016, 212, 883- 889. doi: 10.1016/j.electacta.2016.07.077
 |