1 |
Mantzavinos D , Kassinos D , Parsons S A . Applications of advanced oxidation processes in wastewater treatment[J]. Water Research, 2009, 43 (16): 3901.
doi: 10.1016/j.watres.2009.08.024
URL
|
2 |
Wu Yining , Zhao Xin , Jin Min , et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253, 372- 377.
doi: 10.1016/j.biortech.2018.01.046
|
3 |
Xu Fei , Cao Fuqian , Kong Qiang , et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486.
doi: 10.1016/j.cej.2018.02.003
|
4 |
Wu Di , Yi Xiaoyun , Tang Rong , et al. Single microbial fuel cell reactor for coking wastewater treatment:Simultaneous carbon and nitrogen removal with zero alkaline consumption[J]. Science of the Total Environment, 2018, 621, 497- 506.
doi: 10.1016/j.scitotenv.2017.11.262
|
5 |
Chae K J , Choi M J , Lee J W , et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresource Technology, 2009, 100 (14): 3518- 3525.
doi: 10.1016/j.biortech.2009.02.065
|
6 |
Rao J R , Richter G J , von Sturm F , et al. The performance of glucose electrodes and the characteristics of different biofuel cell constructions[J]. Bioelectrochemistry and Bioenergetics, 1976, 3 (1): 139- 150.
doi: 10.1016/0302-4598(76)85014-3
|
7 |
Logan B E , Regan J M . Microbial fuel cells:challenges and applications[J]. Environmental Science & Technology, 2006, 40 (17): 5172- 5180.
URL
|
8 |
Huang Yuelong , He Zhen , Mansfeld F . Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry, 2010, 79 (2): 261- 264.
doi: 10.1016/j.bioelechem.2010.03.009
|
9 |
Rinaldi A , Mecheri B , Garavaglia V , et al. Engineering materials and biology to boost performance of microbial fuel cells:a critical review[J]. Energy & Environmental Science, 2008, 1 (4): 417.
|
10 |
Schroder U . Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Physical Chemistry Chemical Physics, 2007, 9 (21): 2619- 2629.
doi: 10.1039/B703627M
|
11 |
Zhou Minghua , Chi Meiling , Luo Jianmei , et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196 (10): 4427- 4435.
doi: 10.1016/j.jpowsour.2011.01.012
URL
|
12 |
Yang E , Chae K J , Kim I S . Comparison of different semipermeable membranes for power generation and water flux in osmotic microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (8): 2305- 2312.
URL
|
13 |
Wei Jincheng , Liang Peng , Huang Xia . Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102 (20): 9335- 9344.
doi: 10.1016/j.biortech.2011.07.019
URL
|
14 |
Mohanakrishna G , Abu-Reesh I M , Kondaveeti S , et al. Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253, 16- 21.
doi: 10.1016/j.biortech.2018.01.005
|
15 |
Mohamed H O , Abdelkareem M A , Obaid M , et al. Cobalt oxidessheathed cobalt nano flakes to improve surface properties of carbonaceous electrodes utilized in microbial fuel cells[J]. Chemical Engineering Journal, 2017, 326, 497- 506.
doi: 10.1016/j.cej.2017.05.166
|
16 |
Ji Guangyong , Silver S . Bacterial resistance mechanisms for heavy metals of environmental concern[J]. Journal of Industrial Microbiology, 1995, 14 (2): 61- 75.
doi: 10.1007/BF01569887
|
17 |
Kim J R , Min B , Logan B E . Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68 (1): 23- 30.
doi: 10.1007/s00253-004-1845-6
URL
|
18 |
Mohamed H O , Obaid M , Poo K M , et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349, 800- 807.
doi: 10.1016/j.cej.2018.05.138
|
19 |
Lv Z , Xie Daohai , Yue Xianjun , et al. Ruthenium oxide-coated carbon felt electrode:a highly active anode for microbial fuel cell applications[J]. Journal of Power Sources, 2012, 210, 26- 31.
doi: 10.1016/j.jpowsour.2012.02.109
URL
|
20 |
Alatraktchi F A , Zhang Yifeng , Angelidaki I . Nanomodification of the electrodes in microbial fuel cell:Impact of nanoparticle density on electricity production and microbial community[J]. Applied Energy, 2014, 116, 216- 222.
doi: 10.1016/j.apenergy.2013.11.058
URL
|
21 |
Jia Xiuqin , He Zaihua , Zhang Xin , et al. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell[J]. Synthetic Metals, 2016, 215, 170- 175.
doi: 10.1016/j.synthmet.2016.02.015
|
22 |
Zeng Lizhen , Zhang Wenguang , Xia Pan , et al. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 102, 351- 356.
doi: 10.1016/j.bios.2017.11.046
|
23 |
Zhang Song , Su Wei , Wang Xiaojing , et al. Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogendoped carbon nanotube nanopolyhedra as advanced electrocatalyst forhigh-performance of activated carbon air-cathode microbial fuel cell[J]. Biosensors & Bioelectronics, 2019, 127, 181- 187.
|
24 |
Tang Jiahuan , Yuan Yong , Liu Ting , et al. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells[J]. Journal of Power Sources, 2015, 274, 170- 176.
doi: 10.1016/j.jpowsour.2014.10.035
|
25 |
Mehdinia A , Ziaei E , Jabbari A . Multi-walled carbon nanotube/SnO2 nanocomposite:a novel anode material for microbial fuel cells[J]. Electrochimica Acta, 2014, 130, 512- 518.
doi: 10.1016/j.electacta.2014.03.011
URL
|
26 |
Yang Jiawei , Cheng Shaoan , Sun Yi , et al. Improving the power generation of microbial fuel cells by modifying the anode with singlewall carbon nanohorns[J]. Biotechnology Letters, 2017, 39 (10): 1515- 1520.
doi: 10.1007/s10529-017-2384-4
|
27 |
Hindatu Y , Annuar M S M , Subramaniam R , et al. Medium-chainlength poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2017, 40 (6): 919- 928.
doi: 10.1007/s00449-017-1756-4
|
28 |
Sonawane J M , Al-Saadi S , Singh Raman R K , et al. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high performance anodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 268, 484- 493.
doi: 10.1016/j.electacta.2018.01.163
|
29 |
Ouis M , Kameche M , Innocent C , et al. Electro-polymerization of pyrrole on graphite electrode:enhancement of electron transfer in bioanode of microbial fuel cell[J]. Polymer Bulletin, 2018, 75 (2): 669- 684.
doi: 10.1007/s00289-017-2048-5
|
30 |
Pu Kaibo , Ma Qian , Cai Wenfang , et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J]. Biochemical Engineering Journal, 2018, 132, 255- 261.
doi: 10.1016/j.bej.2018.01.018
|
31 |
Rikame S S , Mungray A A , Mungray A K . Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal[J]. Electrochimica Acta, 2018, 275, 8- 17.
doi: 10.1016/j.electacta.2018.04.141
|
32 |
Wu Gaoming , Bao Han , Xia Zheng , et al. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells[J]. Journal of Power Sources, 2018, 384, 86- 92.
doi: 10.1016/j.jpowsour.2018.02.045
|
33 |
Liao Zhihong , Sun Jianzhong , Sun Dezhen , et al. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells[J]. Bioresource Technology, 2015, 192, 831- 834.
doi: 10.1016/j.biortech.2015.05.105
|
34 |
Mishra P , Jain R . Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41 (47): 22394- 22405.
doi: 10.1016/j.ijhydene.2016.09.020
|
35 |
Khilari S , Pandit S , Varanasi J L , et al. Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell[J]. ACS Applied Materials & Interfaces, 2015, 7 (37): 20657- 20666.
URL
|
36 |
Hou Junxian , Liu Zhongliang , Li Yanxia , et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015, 38 (5): 881- 888.
doi: 10.1007/s00449-014-1332-0
|
37 |
Chang S H , Huang B Y , Wan Tinghao , et al. Surface modification of carbon cloth anodes for microbial fuel cells using atmospheric-pressure plasma jet processed reduced graphene oxides[J]. RSC Advances, 2017, 7 (89): 56433- 56439.
doi: 10.1039/C7RA11914C
|
38 |
Yang Na , Ren Yueping , Li Xiufen , et al. Effect of graphene-graphene oxide modified anode on the performance of microbial fuel cell[J]. Nanomaterials, 2016, 6 (9): 174.
doi: 10.3390/nano6090174
|
39 |
Yang Xiaoshuang , Ma Xiaoxiao , Wang Kai , et al. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode[J]. Electrochimica Acta, 2016, 210, 846- 853.
doi: 10.1016/j.electacta.2016.05.215
|
40 |
Hidalgo D , Tommasi T , Bocchini S , et al. Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells[J]. Energy, 2016, 99, 193- 201.
doi: 10.1016/j.energy.2016.01.039
|
41 |
Zhao Yu , Ma Yan , Li Ting , et al. Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells[J]. RSC Advances, 2018, 8 (4): 2059- 2064.
doi: 10.1039/C7RA12923H
|
42 |
Zeng Lizhen , Zhao Shaofei , He Miao . Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells[J]. Journal of Power Sources, 2018, 376, 33- 40.
doi: 10.1016/j.jpowsour.2017.11.071
|
43 |
Chen Qin , Pu Wenhong , Hou Huijie , et al. Activated microporousmesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249, 567- 573.
doi: 10.1016/j.biortech.2017.09.086
|
44 |
Huang Zhe , Gong A , Hou Dianxun , et al. A conductive wood membrane anode improves effluent quality of microbial fuel cells[J]. Environmental Science:Water Research & Technology, 2017, 3 (5): 940- 946.
URL
|
45 |
Chen Shanshan , Tang Jiahuan , Jing Xianyue , et al. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting[J]. Electrochimica Acta, 2016, 212, 883- 889.
doi: 10.1016/j.electacta.2016.07.077
|