1 |
Yu Yang , Ndayisenga F , Yu Zhisen , et al. Co-substrate strategy for improved power production and chlorophenol degradation in a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44 (36): 20312- 20322.
doi: 10.1016/j.ijhydene.2019.05.221
|
2 |
Ali N , Yousaf S , Anam M , et al. Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell[J]. Environmental Technology, 2016, 37 (22): 2815- 2822.
doi: 10.1080/09593330.2016.1166267
|
3 |
Sipos A J , Urakawa H . Differential responses of nitrifying archaea and bacteria to methylene blue toxicity[J]. Letters in Applied Microbiology, 2016, 62 (2): 199- 206.
URL
|
4 |
Zhang Xiaoling , Miao Xinxin , Li Jiandi , et al. Evaluation of electricity production from Fenton oxidation pretreated sludge using a twochamber microbial fuel cell[J]. Chemical Engineering Journal, 2019, 361, 599- 608.
doi: 10.1016/j.cej.2018.12.117
|
5 |
Lui Gregory , Jiang Gaopeng , Fowler M . A high performance wastewater-fed flow-photocatalytic fuel cell[J]. Journal of Power Sources, 2019, 425, 69- 75.
doi: 10.1016/j.jpowsour.2019.03.091
|
6 |
Zhang Manman , Wang Ying , Peng Liang , et al. Combined photoelectrocatalytic microbial fuel cell(PEC-MFC) degradation of refractory organic pollutants and in-situ electricity utilization[J]. Chemosphere, 2019, 214, 669- 678.
doi: 10.1016/j.chemosphere.2018.09.085
|
7 |
Li Ming , Zhou Minghua , Tan Chaolin , et al. Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell[J]. Bioresource Technology, 2019, 272, 501- 509.
doi: 10.1016/j.biortech.2018.10.078
|
8 |
Yang Zhigang , Nie Changliang , Hou Qingjie , et al. Coupling a photosynthetic microbial fuel cell(PMFC) with photobioreactors(PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent[J]. Chemical Engineering Journal, 2019, 359, 402- 408.
URL
|
9 |
Qian Fang , Wang Han , Ling Yichuan , et al. Photoenhanced electrochemical interaction between Shewanella and a Hematite nanowire photoanode[J]. Nano Letters, 2014, 14 (6): 3688- 3693.
doi: 10.1021/nl501664n
|
10 |
Feng Huajun , Liang Yuxiang , Guo Kun , et al. Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems[J]. Water Research, 2016, 102, 428- 435.
URL
|
11 |
Zhang Ying , Zhao Yingying , Zhou Minghua . A photosynthetic algal microbial fuel cell for treating swine wastewater[J]. Environmental science and Pollution Research International, 2019, 26 (6): 6182- 6190.
doi: 10.1007/s11356-018-3960-4
|
12 |
Xu Peng , Xu Hao , Zheng Dayang . Simultaneous electricity generation and wastewater treatment in a photocatalytic fuel cell integrating electro-Fenton process[J]. Journal of Power Sources, 2019, 421, 156- 161.
doi: 10.1016/j.jpowsour.2019.03.033
|
13 |
Santoro C , Walter X A , Soavi F , et al. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine[J]. Electrochimica Acta, 2019, 307, 241- 252.
doi: 10.1016/j.electacta.2019.03.194
|
14 |
Walter X A , Greenman J , Ieropoulos I . Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell[J]. Bioelectrochemistry(Amsterdam, Netherlands), 2018, 123, 119- 124.
doi: 10.1016/j.bioelechem.2018.04.011
|
15 |
Guan Chungyu , Tseng Yiho , Tsang D C D , et al. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production[J]. Journal of Hazardous Materials, 2019, 365, 137- 145.
doi: 10.1016/j.jhazmat.2018.10.086
|
16 |
Zhao Lin , Deng Jinghui , Hou Huijie , et al. Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell[J]. Journal of Cleaner Production, 2019, 221, 678- 683.
doi: 10.1016/j.jclepro.2019.02.212
|
17 |
Castresana P A , Martinez S M , Freeman E , et al. Electricity generation from moss with light-driven microbial fuel cells[J]. Electrochimica Acta, 2019, 298, 934- 942.
doi: 10.1016/j.electacta.2018.12.108
|
18 |
Xu Fei , Cao Fuqian , Kong Qiang , et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486.
doi: 10.1016/j.cej.2018.02.003
|
19 |
Kabutey F T , Zhao Qingliang , Wei Liangliang . An overview of plant microbial fuel cells(PMFCs):Configurations and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 110, 402- 414.
doi: 10.1016/j.rser.2019.05.016
|
20 |
Venkata M S , Mohanakrishna G , Chiranjeevi P . Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment[J]. Bioresource Technology, 2011, 102 (14): 7036- 7042.
doi: 10.1016/j.biortech.2011.04.033
|
21 |
綦琪, 王许云, 贾云. 微生物燃料电池电极材料研究进展[J]. 科技导报, 2015, 33 (14): 28- 31.
doi: 10.3981/j.issn.1000-7857.2015.14.004
|
22 |
Jin Xiaojun , Guo Fei , Ma Weiqi . Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells[J]. Chemical Engineering Journal, 2019, 370, 527- 535.
doi: 10.1016/j.cej.2019.03.023
|
23 |
Zhao Na , Ma Zhaokun , Song Huaihe , et al. Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell[J]. Electrochimica Acta, 2019, 296, 69- 74.
doi: 10.1016/j.electacta.2018.11.039
|
24 |
Ren Pengyuan , Ci Suqin , Ding Yichun , et al. Molten-salt-mediated synthesis of porous Fe-containing N-doped carbon as efficient cathode catalysts for microbial fuel cells[J]. Applied Surface Science, 2019, 481, 1206- 1212.
doi: 10.1016/j.apsusc.2019.03.279
|
25 |
Massaglia G , Margaria V , Sacco A , et al. In situ continuous current production from marine floating microbial fuel cells[J]. Applied Energy, 2018, 230, 78- 85.
doi: 10.1016/j.apenergy.2018.08.061
|
26 |
Kamyabi M A , Qaratapeh K E , Jadali S . Decorating the carbon felt electrode with polymeric platinize nanocomposite:characterization and electrocatalytic activity towards methanol oxidation reaction[J]. Journal of Chemical Sciences, 2019, 131 (7): 1- 9.
URL
|
27 |
Jeong K I , Song S A , Kim S S . Glucose-based carbon-coating layer on carbon felt electrodes of vanadium redox flow batteries[J]. Composites Part B, 2019, 131 (7): 1- 9.
doi: 10.1016/j.compositesb.2019.107072
|
28 |
Pareek A , Sravan J S , Mohan S V . Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell[J]. Journal of Materials Science, 2019, 54 (17): 11604- 11617.
doi: 10.1007/s10853-019-03718-y
|
29 |
韩军凯, 冯奕钰, 李瑀, 等. 刺激响应型石墨烯材料的研究新进展[J]. 功能高分子学报, 2019, 32 (4): 411- 420.
URL
|
30 |
Zhou Shaowei , Lin Mei , Zhuang Zechao , et al. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell[J]. Chemosphere, 2019, 232, 396- 402.
doi: 10.1016/j.chemosphere.2019.05.191
|
31 |
Yi Yue , Xie Beizhen , Zhao Ting , et al. Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism[J]. Bioelectrochemistry, 2019, 128, 109- 117.
doi: 10.1016/j.bioelechem.2019.04.001
|
32 |
Treesubsuntorn C , Chaiworn W , Surareungchai W , et al. Increasing of electricity production from Echinodosus cordifolius-microbial fuel cell by inoculating Bacillus thuringiensis[J]. Science of the Total Environment, 2019, 686, 538- 545.
doi: 10.1016/j.scitotenv.2019.06.063
|
33 |
张霞, 肖莹, 周巧红. 微生物燃料电池中产电微生物的研究进展[J]. 生物技术通报, 2017, 33 (10): 64- 73.
URL
|
34 |
Jiang Xiuyun , Burger B , Gajdos F , et al. Kinetics of trifurcated electron flow in the decaheme bacterial proteins MtrC and MtrF[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (9): 3425- 3430.
doi: 10.1073/pnas.1818003116
|
35 |
Wu Xian , Zou Long , Huang Yunhong . Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells[J]. Enzyme and Microbial Technology, 2018, 115, 23- 28.
doi: 10.1016/j.enzmictec.2018.04.005
|
36 |
Hou Bin , Lu Jing , Wang Haifang . Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation[J]. Bioelectrochemistry, 2019, 128, 291- 297.
doi: 10.1016/j.bioelechem.2019.04.019
|
37 |
Neethu B , Bhowmick G D , Ghangrekar M M . A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell[J]. Biochemical Engineering Journal, 2019, 148, 170- 177.
doi: 10.1016/j.bej.2019.05.011
|
38 |
Zhu Xi , Shen Chunhui , Gao Shanjun . High-temperature proton exchange membrane with dual proton transfer channels by incorporating phosphonic acid functionalized siloxane into poly(2, 6-dimethyl-1, 4-phenyleneoxide)(PPO)[J]. Solid State Ionics, 2019, 337, 193- 204.
doi: 10.1016/j.ssi.2019.04.027
|
39 |
孟洪, 彭昌盛, 卢寿慈. 离子交换膜的选择透过性机理[J]. 北京科技大学学报, 2002, 24 (6): 656- 660.
doi: 10.3321/j.issn:1001-053X.2002.06.019
|
40 |
Koók L , Quéméner E D-L , Bakonyi P , et al. Behavior of two-chamber microbial electrochemical systems started-up with different ionexchange membrane separators[J]. Bioresource Technology, 2019, 278, 279- 286.
doi: 10.1016/j.biortech.2019.01.097
|