1 |
CHENG Dongle, NGO H H, GUO Wenshan,et al. A critical review on antibiotics and hormones in swine wastewater:Water pollution problems and control approaches[J]. Journal of Hazardous Materials, 2020, 387:121682. doi: 10.1016/j.jhazmat.2019.121682
|
2 |
ZHI Suli, ZHOU Jing, LIU Haixue,et al. Simultaneous extraction and determination of 45 veterinary antibiotics in swine manure by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2020, 1154:122286. doi: 10.1016/j.jchromb.2020.122286
|
3 |
CHEN Jianfei, XIE Shuguang. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms[J]. The Science of the Total Environment, 2018, 640/641:1465-1477. doi: 10.1016/j.scitotenv.2018.06.016
|
4 |
徐圣君,王华彩,姜参参,等. 畜禽养殖废水生物处理技术研究进展[J]. 环境科学与技术,2021,44(S2):153-162.
|
|
XU Shengjun, WANG Huacai, JIANG Cencen,et al. Research progress on biological treatment technology of livestock and poultry breeding wastewater[J]. Environmental Science & Technology,2021,44(S2):153-162.
|
5 |
JI Junyuan, XING Yajuan, MA Zitao,et al. Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment[J]. Chemosphere, 2013, 91(8):1094-1098. doi: 10.1016/j.chemosphere.2013.01.009
|
6 |
TANG Jialing, PU Yunhui, ZENG Ting,et al. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor:Performance and membrane filtration properties[J]. Bioresource Technology, 2022, 345:126470. doi: 10.1016/j.biortech.2021.126470
|
7 |
DE VELA R J. A review of the factors affecting the performance of anaerobic membrane bioreactor and strategies to control membrane fouling[J]. Reviews in Environmental Science and Bio-Technology,2021,20(3):607-644.
|
8 |
刘壮壮,李同,刘崇涛,等. 微生物燃料电池处理畜禽养殖废水研究进展及展望[J]. 农业资源与环境学报,2024,41(2):344-359.
|
|
LIU Zhuangzhuang, LI Tong, LIU Chongtao,et al. Progress and prospects of microbial fuel cells for treating livestock and poultry wastewater[J]. Journal of Agricultural Resources and Environment,2024,41(2):344-359.
|
9 |
CAO Mengjing, ZHANG Yongxiang, ZHANG Yan. Effect of applied voltage on membrane fouling in the amplifying anaerobic electro-chemical membrane bioreactor for long-term operation[J]. RSC Advances,2021,11(50):31364-31372.
|
10 |
DING Aqiang, FAN Qin, CHENG Ran,et al. Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor(MEC-AnMBR) and its membrane fouling mitigation mechanism[J]. Chemical Engineering Journal, 2018, 333:630-635. doi: 10.1016/j.cej.2017.09.190
|
11 |
ZHANG Shuo, YANG Kai, LIU Wei,et al. Understanding the mechanism of membrane fouling suppression in electro-anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2021, 418:129384. doi: 10.1016/j.cej.2021.129384
|
12 |
LIU Yanqing, GAO Xintong, CAO Xian,et al. Study on the performance and mechanism of bio-electrochemical system to mitigate membrane fouling in bioreactors[J]. Bioresource Technology, 2022, 365:128163. doi: 10.1016/j.biortech.2022.128163
|
13 |
YIN Xiafei, LI Xiufen, HUA Zhaozhe,et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research, 2020, 171:115452. doi: 10.1016/j.watres.2019.115452
|
14 |
HUANG Haiming, XIAO Dean, LIU Jiahui,et al. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling[J]. Scientific Reports, 2015, 5:10183. doi: 10.1038/srep10183
|
15 |
WAN Yiping, LIU Zehua, LIU Yu. Veterinary antibiotics in swine and cattle wastewaters of China and the United States:Features and differences[J]. Water Environment Research, 2021, 93(9):1516-1529. doi: 10.1002/wer.1534
|
16 |
ZHANG Xinbo, HUANG Haojie, DU Qing,et al. Performance of a recirculated biogas-sparging anaerobic membrane bioreactor system for treating synthetic swine wastewater containing sulfadiazine antibiotic[J]. Chemical Engineering Journal, 2023, 476:146735. doi: 10.1016/j.cej.2023.146735
|
17 |
WU Dongzhu, ZHAO Lin, VAKHARIA V K,et al. Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO 2 separation:From lab to pilot scale[J]. Journal of Membrane Science, 2016, 510:58-71. doi: 10.1016/j.memsci.2016.03.022
|
18 |
李婕,刘广立,张仁铎,等. 葡萄糖和硝基苯为混合燃料时MFC的产电特性研究[J]. 环境科学,2010,31(11):2811-2817.
|
|
LI Jie, LIU Guangli, ZHANG Renduo,et al. Power generation from glucose and nitrobenzene degradation using the microbial fuel cell[J]. Environmental Science,2010,31(11):2811-2817.
|
19 |
LOGAN B E, HAMELERS B, ROZENDAL R,et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
|
20 |
RAYCHAUDHURI A, BEHERA M. Ceramic membrane modified with rice husk ash for application in microbial fuel cells[J]. Electrochimica Acta, 2020, 363:137261. doi: 10.1016/j.electacta.2020.137261
|
21 |
赵智强. 厌氧甲烷化中互养微生物种间直接电子传递的构建与强化[D]. 大连:大连理工大学,2017.
|
|
ZHAO Zhiqiang. Establishment and enhancement of direct interspecies electron transfer between syntrophic microorganisms during anaerobic methanogenesis[D]. Dalian:Dalian University of Technology,2017.
|
22 |
李欣航. 磺胺嘧啶的厌氧生物降解及其强化[D]. 天津:天津工业大学,2021.
|
|
LI Xinhang. Anaerobic biodegradation of sulfadiazine and its strengthening[D]. Tianjin:Tianjin Polytechnic University,2021.
|
23 |
SRIDANG P C, LOBOS J, POTTIER A,et al. Biomass adaptation to complex substrate degradation in membrane bioreactors:Appropriated operating conditions[J]. Water Science and Technology, 2008, 57(1):33-40. doi: 10.2166/wst.2008.650
|
24 |
GIL G C, CHANG I S, KIM B H,et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4):327-334. doi: 10.1016/s0956-5663(02)00110-0
|
25 |
王凤雪,张新波,尚禹彤,等. MBBR-MBR对磺胺嘧啶的去除及膜污染特性[J]. 中国给水排水,2023,39(1):80-85.
|
|
WANG Fengxue, ZHANG Xinbo, SHANG Yutong,et al. MBBR-MBR system for removal of sulfadiazine and its membrane fouling characteristics[J]. China Water & Wastewater,2023,39(1):80-85.
|
26 |
ZHANG Wenxiang, LIANG Wenzhong, ZHANG Zhien,et al. Aerobic granular sludge(AGS) scouring to mitigate membrane fouling:Performance,hydrodynamic mechanism and contribution quantification model[J]. Water Research, 2021, 188:116518. doi: 10.1016/j.watres.2020.116518
|
27 |
LIU Xiaomeng, SHENG Guoping, YU Hanqing. DLVO approach to the flocculability of a photosynthetic H 2-producing bacterium,Rhodopseudomonas acidophila[J]. Environmental Science & Technology, 2007, 41(13):4620-4625. doi: 10.1021/es070107n
|
28 |
DEB A, GURUNG K, RUMKY J,et al. Dynamics of microbial community and their effects on membrane fouling in an anoxic-oxic gravity-driven membrane bioreactor under varying solid retention time:A pilot-scale study[J]. Science of the Total Environment, 2022, 807(Pt 2):150878. doi: 10.1016/j.scitotenv.2021.150878
|
29 |
ZHANG Xinbo, ZHANG Zumin, LIU Ying,et al. Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios[J]. Bioresource Technology, 2020, 318:124180. doi: 10.1016/j.biortech.2020.124180
|
30 |
JIANG Junqiu, ZHAO Qingliang, WEI Liangliang,et al. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel[J]. Water Research, 2010, 44(7):2163-2170. doi: 10.1016/j.watres.2009.12.033
|
31 |
ISHIZAKI S, TERADA K, MIYAKE H,et al. Impact of anodic respiration on biopolymer production and consequent membrane fouling[J]. Environmental Science & Technology, 2016, 50(17):9515-9523. doi: 10.1021/acs.est.6b00728
|