[1] Sideropoulos A S,Specht S M. Evaluation of microbial testing methods for the mutagenicity of quinoline and its derivatives[J]. Current Microbiology,1984,11(2):59-65.
[2] Logan B E,Hamelers B,Rozendal R A,et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology,2006,40(17):5181-5192.
[3] Rabaey K,Lissens G. A microbial fuel capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnol. Lett.,2003, 25(18):1531-1535.
[4] Logan B E. Simultaneous wastewater treatment and biological electricity generation[J]. Water Science & Technology,2005,52(1/2):31-37.
[5] Zhang C,Li M,Liu G,et al. Pyridine degradation in the microbialfuel cells[J]. J. Hazard. Mater.,2009,172(1):465-471.
[6] Zhang C,Liu G,Zhang R,et al. Electricity production from and biodegradation of quinoline in the microbial fuel cell[J]. Journal of Environmental Science and Health,Part A,2010,45(2):250-256.
[7] 司雄元,程波,刘小红. 零价铁体系降解多氯联苯研究进展综述[J]. 安徽农业学报,2014,20(11):26-33.
[8] Lu H,Oehmen A,Virdis B,et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources[J]. Water Research,2006,40(20):3838-3848.
[9] Deng B,Burris D R,Campbell T J. Reduction of vinyl chloride in melatlic iron-water systems[J]. Environmental Science & Technology, 1999,33(15):2651-2656.
[10] 罗春香,戴友芝,史雷,等. Fe0/厌氧微生物联合体系降解硝基苯的研究[J]. 微生物学通报,2009,36(2):160-164.
[11] 梁俊倩,吴锦华,李平. 零价铁与厌氧微生物协同还原地下水中的硝基苯[J]. 环境工程学报,2012,6(8):2512-2516.
[12] Tang C,Huang Y H,Zeng H,et al. Reductive removal of selenate by zero-valent iron:The roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms[J]. Water Research,2014,67:166-174. |