1 |
DE ABAJO G F J , HERNÁNDEZ R J , KAMINER I , et al. Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces[J]. ACS Nano, 2020, 14 (7): 7704- 7713.
doi: 10.1021/acsnano.0c04596
|
2 |
MORAWSKA L , CAO Junji . Airborne transmission of SARS-CoV- 2:The world should face the reality[J]. Environment International, 2020, 139, 105730.
doi: 10.1016/j.envint.2020.105730
|
3 |
VAN DOREMALEN , BUSHMAKER T , MORRIS D H , et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS- CoV-1[J]. The New England Journal of Medicine, 2020, 382 (16): 1564- 1567.
doi: 10.1056/NEJMc2004973
|
4 |
ONG S W X , TAN Y K , CHIA P Y , et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) from a symptomatic patient[J]. Journal of the American Medical Association, 2020, 323 (16): 1610- 1612.
doi: 10.1001/jama.2020.3227
|
5 |
中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案: 试行第七版[EB/OL]. (2020-03-04)[2021-05-27]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf.
|
6 |
WANG Qihui , ZHANG Yanfang , WU Lili , et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181 (4): 894- 904.
doi: 10.1016/j.cell.2020.03.045
|
7 |
YAN Renhong, ZHANG Yuanyuan, LI Yaning, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. 2020, 367(6485): 1444-1448.
|
8 |
CUI Jie , LI Fan , SHI Zhengli . Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17 (3): 181- 192.
doi: 10.1038/s41579-018-0118-9
|
9 |
KIM D , LEE J Y , YANG J S , et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181 (4): 914- 921.
doi: 10.1016/j.cell.2020.04.011
|
10 |
YANG Jinsung , PETITJEAN S J L , Koehler M , et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor[J]. Nature Communications, 2020, 11, 4541.
doi: 10.1038/s41467-020-18319-6
|
11 |
HU Ben , GUO Hua , ZHOU Peng , et al. Characteristics of SARS- CoV-2 and COVID-19[J]. Nature Reviews Microbiology, 2021, 19, 141- 154.
doi: 10.1038/s41579-020-00459-7
|
12 |
WRAPP D , WANG Nianshuang , CORBETT K S , et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367 (6483): 1260- 1263.
doi: 10.1126/science.abb2507
|
13 |
MAZHAR M A , KHAN N A , AHMED S , et al. Chlorination disinfection by-products in municipal drinking water: A review[J]. Journal of Cleaner Production, 2020, 273, 123159.
doi: 10.1016/j.jclepro.2020.123159
|
14 |
SHANNON M A , BOHN P W , ELIMELECH M , et al. Nanoscience and technology[M]. UK: Macmillan Publishers Ltd, 2009: 337- 346.
|
15 |
JI Haodong , DU Penghui , ZHAO Dongye , et al. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic "hot spots" at the rutile-anatase-titanate interfaces[J]. Applied Catalysis B: Environmental, 2020, 263, 118357.
doi: 10.1016/j.apcatb.2019.118357
|
16 |
熊兆锟, 刘文, 曹剑钊, 等. 新冠肺炎疫情对医院污水防控体系建设的影响及启示[J]. 土木与环境工程学报, 2020, 42 (6): 134- 142.
URL
|
17 |
VON GUNTEN U . Ozonation of drinking water: Part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37 (7): 1443- 1467.
doi: 10.1016/S0043-1354(02)00457-8
|
18 |
JI Haodong , GONG Yanyan , DUAN Jun , et al. Degradation of petroleum hydrocarbons in seawater by simulated surface-level atmospheric ozone: Reaction kinetics and effect of oil dispersant[J]. Marine Pollution Bulletin, 2018, 135, 427- 440.
doi: 10.1016/j.marpolbul.2018.07.047
|
19 |
GOMES J , MATOS A , GMUREK M , et al. Ozone and photocatalytic processes for pathogens removal from water: A review[J]. Catalysts, 2019, 9 (1): 46.
doi: 10.3390/catal9010046
|
20 |
STANFORD B D , PISARENKO A N , HOLBROOK R D , et al. Preozonation effects on the reduction of reverse osmosis membrane fouling in water reuse[J]. Ozone: Science & Engineering, 2011, 33 (5): 379- 388.
URL
|
21 |
丁兰英. 臭氧杀菌效果及影响因素[C]//全国臭氧技术应用研讨与产品展示会论文集. 北京: 中国国际科技促进会, 2001: 81-87.
|
22 |
冯遵成, 赵可胜, 张希东, 等. 臭氧对物体表面IBV冠状病毒的杀灭效果的研究[J]. 中国海洋大学学报: 自然科学版, 2004, 34 (6): 1045- 1048.
URL
|
23 |
洪波, 王品虹, 纪义国, 等. 臭氧对空气中IBV冠状病毒的杀灭效果的研究[J]. 青岛海洋大学学报: 自然科学版, 2003, 33 (6): 861- 864.
doi: 10.3969/j.issn.1672-5174.2003.06.006
|
24 |
SCOTT M N , LESHER E C . Effect of ozone on survival and permeability of Escherichia coli[J]. Journal of Bacteriology, 1963, 85 (3): 567- 576.
doi: 10.1128/jb.85.3.567-576.1963
|
25 |
HAMELIN C , CHUNG Y S . Optimal conditions for mutagenesis by ozone in Escherichia coli K12[J]. Mutation Research, 1974, 24 (3): 271- 279.
doi: 10.1016/0027-5107(74)90175-4
|
26 |
HUNT N K , MARIAS B J . Kinetics of Escherichia coli inactivation with ozone[J]. Water Research, 1997, 31 (6): 1355- 1362.
doi: 10.1016/S0043-1354(96)00394-6
|
27 |
李洪敏, 于莹, 齐滨, 等. 臭氧对不同细菌杀灭效果比较[J]. 中国消毒学杂志, 2004, 21 (2): 123- 125.
doi: 10.3969/j.issn.1001-7658.2004.02.015
|
28 |
FINCH G R , BLACK E K , LABATIUK C W , et al. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone[J]. Applied and Environmental Microbiology, 1993, 59 (11): 3674- 3680.
doi: 10.1128/aem.59.11.3674-3680.1993
|
29 |
RENNECKER J L , MARIÑAS B J , OWENS J H , et al. Inactivation of Cryptosporidium parvum oocysts with ozone[J]. Water Research, 1999, 33 (11): 2481- 2488.
doi: 10.1016/S0043-1354(99)00116-5
|
30 |
WOLF C , VON GUNTEN U , KOHN T . Kinetics of inactivation of waterborne enteric viruses by ozone[J]. Environmental Science & Technology, 2018, 52 (4): 2170- 2177.
URL
|
31 |
张珈敏, 郑从义, 肖庚富, 等. 臭氧水对SARS病毒的灭活效果观察[J]. 中国消毒学杂志, 2004, 21 (1): 27- 28.
doi: 10.3969/j.issn.1001-7658.2004.01.009
|
32 |
张雪颖. 浅述臭氧的灭菌效能[J]. 食品安全导刊, 2019, (6): 141- 142.
URL
|
33 |
冀豪栋, 齐娟娟, 郑茂盛, 等. 纳米技术在水中病毒灭活中的应用: 对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 2021,
doi: 10.7536/PC200205
|
34 |
DRIEDGER A , STAUB E , PINKERNELL U , et al. Inactivation of Bacillus subtilis spores and formation of bromate during ozonation[J]. Water Research, 2001, 35 (12): 2950- 2960.
doi: 10.1016/S0043-1354(00)00577-7
|
35 |
MAGBANUA B S , SAVANT G , TRUAX D , et al. Combined ozone and ultraviolet inactivation of Escherichia coli[J]. Environmental Letters, 2006, 41 (6): 1043- 1055.
|
36 |
WOLFE R L , STEWART M H , SCOTT K N , et al. Inactivation of Giardia muris and indicator organisms seeded in surface water supplies by PEROXONE and ozone[J]. Environmental Science & Technology, 1989, 23 (6): 744- 745.
URL
|
37 |
BURLESON G R , MURRAY T M , POLLARD M . Inactivation of viruses and bacteria by ozone, with and without sonication[J]. Applied and Environmental Microbiology, 1975, 29 (3): 340- 344.
doi: 10.1128/am.29.3.340-344.1975
|
38 |
YU Kuopin , HUANG Yiting , YANG Shangchun . The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore[J]. Journal of Hazardous Materials, 2013, 261, 155- 162.
doi: 10.1016/j.jhazmat.2013.07.029
|
39 |
KIST L T , ALBRECHT C , ÊNIO L M . Hospital laundry wastewater disinfection with catalytic photoozonation[J]. Clean: Soil Air Water, 2010, 36 (9): 775- 780.
|
40 |
MOREIRA N , SOUSA J M , MACEDO G , et al. Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity[J]. Water Research, 2016, 94, 10- 22.
doi: 10.1016/j.watres.2016.02.003
|
41 |
MECHA A C , ONYANGO M S , OCHIENG A , et al. Synergistic effect of UV-vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study[J]. Journal of Catalysis, 2016, 341, 116- 125.
doi: 10.1016/j.jcat.2016.06.015
|
42 |
IZADIFARD M , ACHARI G , LANGFORD C H , et al. Degradation of sulfolane using activated persulfate with UV and UV-ozone[J]. Water Research, 2017, 325, 325- 331.
URL
|
43 |
MERENYI G , LIND J , NAUMOV S , et al. Reaction of ozone with hydrogen peroxide(peroxone process): A revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations[J]. Environmental Science & Technology, 2010, 44 (9): 3505- 3507.
URL
|
44 |
KANG J W , HOFFMANN M R . Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone[J]. Environmental Science & Technology, 1998, 32 (20): 3194- 3199.
URL
|
45 |
唐燕萍, 范伟, 沈丽利. 新型冠状病毒肺炎疫情期间臭氧消毒机对病房床单位消毒效果观察[J]. 中国消毒学杂志, 2020, 37 (6): 420- 422.
URL
|
46 |
中华人民共和国国家卫生健康委员会. WS/T 512-2016医疗机构环境表面清洁与消毒管理规范[S].
|
47 |
CLAVO B , CÓRDOBA-LANUS E , RODRIGUEZ-ESPARRAGON F , et al. Effects of ozone treatment on personal protective equipment contaminated with SARS-CoV-2[J]. Antioxidants, 2020, 9 (12): 1222.
doi: 10.3390/antiox9121222
|
48 |
CHIN A W H , CHU J T S , PERERA M R A , et al. Stability of SARS- CoV-2 in different environmental conditions[J]. The Lancet Microbe, 2020, 1 (1): E10.
doi: 10.1016/S2666-5247(20)30003-3
|
49 |
BIVINS A , GREAVES J , FISCHER R , et al. Persistence of SARS- CoV-2 in water and wastewater[J]. Environmental Science & Technology, 2020, 7 (12): 937- 942.
URL
|
50 |
CHEN Yifei , CHEN Liangjun , DENG Qiaoling , et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients[J]. Journal of Medical Virology, 2020, 92 (7): 833- 840.
doi: 10.1002/jmv.25825
|
51 |
黄虞远, 张思慧, 周娟, 等. 新型冠状病毒在环境中的存活潜力和感染风险[J]. 疾病监测, 2021, 36 (1): 16- 22.
URL
|
52 |
MATSON M J , YINDA C K , SEIFERT S N , et al. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum[J]. Emerging Infectious Diseases, 2020, 26 (9): 2276- 2278.
doi: 10.3201/eid2609.202267
|
53 |
FEARS A C , KLIMSTRA W B , DUPREX P , et al. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions[J]. MedRxiv, 2020,
doi: 10.1101/2020.04.13.20063784
|
54 |
DAI Manman , LI Huanan , NAN Yan , et al. Long-term survival of salmon-attached SARS-CoV-2 at 4℃ as a potential source of transmission in seafood markets[J]. BioRxiv, 2020,
doi: 10.1101/2020.09.06.284695
|
55 |
FOLADORI P , CUTRUPI F , SEGATA N , et al. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review[J]. Science of the Total Environment, 2020, 743, 140444.
doi: 10.1016/j.scitotenv.2020.140444
|
56 |
杨书慧, 吴颐杭, 屈雅静, 等. 病毒在无生命物体表面存活时间及其影响因素分析[J]. 环境科学研究, 2020, 33 (7): 1618- 1623.
URL
|
57 |
BAYARRI B , CRUZ-ALCALDE A , LOPEZ-VINENT N , et al. Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses[J]. Journal of Hazardous Materials, 2021, 415, 125658.
doi: 10.1016/j.jhazmat.2021.125658
|
58 |
TIZAOUI C . Ozone: A potential oxidant for COVID-19 virus(SARS- CoV-2)[J]. Ozone: Science & Engineering, 2020, 42 (5): 378- 385.
URL
|
59 |
CRISCUOLO E , DIOTTI R A , FERRARESE R , et al. Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials[J]. Emerging Microbes & Infections, 2021, 10 (1): 206- 210.
URL
|
60 |
FERNÁNDEZ-CUADROS M E , ALBALADEJO-FLORIN M J , PEÑALORA D , et al. Ozone (O3) and SARS-CoV-2:Physiological bases and their therapeutic possibilities according to COVID-19 evolutionary stage[J]. SN Comprehensive Clinical Medicine, 2020, 2 (8): 1094- 1102.
doi: 10.1007/s42399-020-00328-7
|