| 1 | DE ABAJO G F J ,  HERNÁNDEZ R J ,  KAMINER I , et al.  Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces[J]. ACS Nano, 2020, 14 (7): 7704- 7713. doi: 10.1021/acsnano.0c04596
 | 
																													
																						| 2 | MORAWSKA L ,  CAO Junji .  Airborne transmission of SARS-CoV- 2:The world should face the reality[J]. Environment International, 2020, 139, 105730. doi: 10.1016/j.envint.2020.105730
 | 
																													
																						| 3 | VAN DOREMALEN ,  BUSHMAKER T ,  MORRIS D H , et al.  Aerosol and surface stability of SARS-CoV-2 as compared with SARS- CoV-1[J]. The New England Journal of Medicine, 2020, 382 (16): 1564- 1567. doi: 10.1056/NEJMc2004973
 | 
																													
																						| 4 | ONG S W X ,  TAN Y K ,  CHIA P Y , et al.  Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) from a symptomatic patient[J]. Journal of the American Medical Association, 2020, 323 (16): 1610- 1612. doi: 10.1001/jama.2020.3227
 | 
																													
																						| 5 | 中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案: 试行第七版[EB/OL]. (2020-03-04)[2021-05-27]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf. | 
																													
																						| 6 | WANG Qihui ,  ZHANG Yanfang ,  WU Lili , et al.  Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181 (4): 894- 904. doi: 10.1016/j.cell.2020.03.045
 | 
																													
																						| 7 | YAN Renhong, ZHANG Yuanyuan, LI Yaning, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. 2020, 367(6485): 1444-1448. | 
																													
																						| 8 | CUI Jie ,  LI Fan ,  SHI Zhengli .  Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17 (3): 181- 192. doi: 10.1038/s41579-018-0118-9
 | 
																													
																						| 9 | KIM D ,  LEE J Y ,  YANG J S , et al.  The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181 (4): 914- 921. doi: 10.1016/j.cell.2020.04.011
 | 
																													
																						| 10 | YANG Jinsung ,  PETITJEAN S J L ,  Koehler M , et al.  Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor[J]. Nature Communications, 2020, 11, 4541. doi: 10.1038/s41467-020-18319-6
 | 
																													
																						| 11 | HU Ben ,  GUO Hua ,  ZHOU Peng , et al.  Characteristics of SARS- CoV-2 and COVID-19[J]. Nature Reviews Microbiology, 2021, 19, 141- 154. doi: 10.1038/s41579-020-00459-7
 | 
																													
																						| 12 | WRAPP D ,  WANG Nianshuang ,  CORBETT K S , et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367 (6483): 1260- 1263. doi: 10.1126/science.abb2507
 | 
																													
																						| 13 | MAZHAR M A ,  KHAN N A ,  AHMED S , et al.  Chlorination disinfection by-products in municipal drinking water: A review[J]. Journal of Cleaner Production, 2020, 273, 123159. doi: 10.1016/j.jclepro.2020.123159
 | 
																													
																						| 14 | SHANNON M A ,  BOHN P W ,  ELIMELECH M , et al.  Nanoscience and technology[M]. UK: Macmillan Publishers Ltd, 2009: 337- 346. | 
																													
																						| 15 | JI Haodong ,  DU Penghui ,  ZHAO Dongye , et al.  2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic "hot spots" at the rutile-anatase-titanate interfaces[J]. Applied Catalysis B: Environmental, 2020, 263, 118357. doi: 10.1016/j.apcatb.2019.118357
 | 
																													
																						| 16 | 熊兆锟, 刘文, 曹剑钊, 等.  新冠肺炎疫情对医院污水防控体系建设的影响及启示[J]. 土木与环境工程学报, 2020, 42 (6): 134- 142. URL
 | 
																													
																						| 17 | VON GUNTEN U .  Ozonation of drinking water: Part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37 (7): 1443- 1467. doi: 10.1016/S0043-1354(02)00457-8
 | 
																													
																						| 18 | JI Haodong ,  GONG Yanyan ,  DUAN Jun , et al.  Degradation of petroleum hydrocarbons in seawater by simulated surface-level atmospheric ozone: Reaction kinetics and effect of oil dispersant[J]. Marine Pollution Bulletin, 2018, 135, 427- 440. doi: 10.1016/j.marpolbul.2018.07.047
 | 
																													
																						| 19 | GOMES J ,  MATOS A ,  GMUREK M , et al.  Ozone and photocatalytic processes for pathogens removal from water: A review[J]. Catalysts, 2019, 9 (1): 46. doi: 10.3390/catal9010046
 | 
																													
																						| 20 | STANFORD B D ,  PISARENKO A N ,  HOLBROOK R D , et al.  Preozonation effects on the reduction of reverse osmosis membrane fouling in water reuse[J]. Ozone: Science & Engineering, 2011, 33 (5): 379- 388. URL
 | 
																													
																						| 21 | 丁兰英. 臭氧杀菌效果及影响因素[C]//全国臭氧技术应用研讨与产品展示会论文集. 北京: 中国国际科技促进会, 2001: 81-87. | 
																													
																						| 22 | 冯遵成, 赵可胜, 张希东, 等.  臭氧对物体表面IBV冠状病毒的杀灭效果的研究[J]. 中国海洋大学学报: 自然科学版, 2004, 34 (6): 1045- 1048. URL
 | 
																													
																						| 23 | 洪波, 王品虹, 纪义国, 等.  臭氧对空气中IBV冠状病毒的杀灭效果的研究[J]. 青岛海洋大学学报: 自然科学版, 2003, 33 (6): 861- 864. doi: 10.3969/j.issn.1672-5174.2003.06.006
 | 
																													
																						| 24 | SCOTT M N ,  LESHER E C .  Effect of ozone on survival and permeability of Escherichia coli[J]. Journal of Bacteriology, 1963, 85 (3): 567- 576. doi: 10.1128/jb.85.3.567-576.1963
 | 
																													
																						| 25 | HAMELIN C ,  CHUNG Y S .  Optimal conditions for mutagenesis by ozone in Escherichia coli K12[J]. Mutation Research, 1974, 24 (3): 271- 279. doi: 10.1016/0027-5107(74)90175-4
 | 
																													
																						| 26 | HUNT N K ,  MARIAS B J .  Kinetics of Escherichia coli inactivation with ozone[J]. Water Research, 1997, 31 (6): 1355- 1362. doi: 10.1016/S0043-1354(96)00394-6
 | 
																													
																						| 27 | 李洪敏, 于莹, 齐滨, 等.  臭氧对不同细菌杀灭效果比较[J]. 中国消毒学杂志, 2004, 21 (2): 123- 125. doi: 10.3969/j.issn.1001-7658.2004.02.015
 | 
																													
																						| 28 | FINCH G R ,  BLACK E K ,  LABATIUK C W , et al.  Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone[J]. Applied and Environmental Microbiology, 1993, 59 (11): 3674- 3680. doi: 10.1128/aem.59.11.3674-3680.1993
 | 
																													
																						| 29 | RENNECKER J L ,  MARIÑAS B J ,  OWENS J H , et al.  Inactivation of Cryptosporidium parvum oocysts with ozone[J]. Water Research, 1999, 33 (11): 2481- 2488. doi: 10.1016/S0043-1354(99)00116-5
 | 
																													
																						| 30 | WOLF C ,  VON GUNTEN U ,  KOHN T .  Kinetics of inactivation of waterborne enteric viruses by ozone[J]. Environmental Science & Technology, 2018, 52 (4): 2170- 2177. URL
 | 
																													
																						| 31 | 张珈敏, 郑从义, 肖庚富, 等.  臭氧水对SARS病毒的灭活效果观察[J]. 中国消毒学杂志, 2004, 21 (1): 27- 28. doi: 10.3969/j.issn.1001-7658.2004.01.009
 | 
																													
																						| 32 | 张雪颖.  浅述臭氧的灭菌效能[J]. 食品安全导刊, 2019, (6): 141- 142. URL
 | 
																													
																						| 33 | 冀豪栋, 齐娟娟, 郑茂盛, 等.  纳米技术在水中病毒灭活中的应用: 对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 2021, doi: 10.7536/PC200205
 | 
																													
																						| 34 | DRIEDGER A ,  STAUB E ,  PINKERNELL U , et al.  Inactivation of Bacillus subtilis spores and formation of bromate during ozonation[J]. Water Research, 2001, 35 (12): 2950- 2960. doi: 10.1016/S0043-1354(00)00577-7
 | 
																													
																						| 35 | MAGBANUA B S ,  SAVANT G ,  TRUAX D , et al.  Combined ozone and ultraviolet inactivation of Escherichia coli[J]. Environmental Letters, 2006, 41 (6): 1043- 1055. | 
																													
																						| 36 | WOLFE R L ,  STEWART M H ,  SCOTT K N , et al.  Inactivation of Giardia muris and indicator organisms seeded in surface water supplies by PEROXONE and ozone[J]. Environmental Science & Technology, 1989, 23 (6): 744- 745. URL
 | 
																													
																						| 37 | BURLESON G R ,  MURRAY T M ,  POLLARD M .  Inactivation of viruses and bacteria by ozone, with and without sonication[J]. Applied and Environmental Microbiology, 1975, 29 (3): 340- 344. doi: 10.1128/am.29.3.340-344.1975
 | 
																													
																						| 38 | YU Kuopin ,  HUANG Yiting ,  YANG Shangchun .  The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore[J]. Journal of Hazardous Materials, 2013, 261, 155- 162. doi: 10.1016/j.jhazmat.2013.07.029
 | 
																													
																						| 39 | KIST L T ,  ALBRECHT C ,  ÊNIO L M .  Hospital laundry wastewater disinfection with catalytic photoozonation[J]. Clean: Soil Air Water, 2010, 36 (9): 775- 780. | 
																													
																						| 40 | MOREIRA N ,  SOUSA J M ,  MACEDO G , et al.  Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity[J]. Water Research, 2016, 94, 10- 22. doi: 10.1016/j.watres.2016.02.003
 | 
																													
																						| 41 | MECHA A C ,  ONYANGO M S ,  OCHIENG A , et al.  Synergistic effect of UV-vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study[J]. Journal of Catalysis, 2016, 341, 116- 125. doi: 10.1016/j.jcat.2016.06.015
 | 
																													
																						| 42 | IZADIFARD M ,  ACHARI G ,  LANGFORD C H , et al.  Degradation of sulfolane using activated persulfate with UV and UV-ozone[J]. Water Research, 2017, 325, 325- 331. URL
 | 
																													
																						| 43 | MERENYI G ,  LIND J ,  NAUMOV S , et al.  Reaction of ozone with hydrogen peroxide(peroxone process): A revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations[J]. Environmental Science & Technology, 2010, 44 (9): 3505- 3507. URL
 | 
																													
																						| 44 | KANG J W ,  HOFFMANN M R .  Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone[J]. Environmental Science & Technology, 1998, 32 (20): 3194- 3199. URL
 | 
																													
																						| 45 | 唐燕萍, 范伟, 沈丽利.  新型冠状病毒肺炎疫情期间臭氧消毒机对病房床单位消毒效果观察[J]. 中国消毒学杂志, 2020, 37 (6): 420- 422. URL
 | 
																													
																						| 46 | 中华人民共和国国家卫生健康委员会. WS/T 512-2016医疗机构环境表面清洁与消毒管理规范[S]. | 
																													
																						| 47 | CLAVO B ,  CÓRDOBA-LANUS E ,  RODRIGUEZ-ESPARRAGON F , et al.  Effects of ozone treatment on personal protective equipment contaminated with SARS-CoV-2[J]. Antioxidants, 2020, 9 (12): 1222. doi: 10.3390/antiox9121222
 | 
																													
																						| 48 | CHIN A W H ,  CHU J T S ,  PERERA M R A , et al.  Stability of SARS- CoV-2 in different environmental conditions[J]. The Lancet Microbe, 2020, 1 (1): E10. doi: 10.1016/S2666-5247(20)30003-3
 | 
																													
																						| 49 | BIVINS A ,  GREAVES J ,  FISCHER R , et al.  Persistence of SARS- CoV-2 in water and wastewater[J]. Environmental Science & Technology, 2020, 7 (12): 937- 942. URL
 | 
																													
																						| 50 | CHEN Yifei ,  CHEN Liangjun ,  DENG Qiaoling , et al.  The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients[J]. Journal of Medical Virology, 2020, 92 (7): 833- 840. doi: 10.1002/jmv.25825
 | 
																													
																						| 51 | 黄虞远, 张思慧, 周娟, 等.  新型冠状病毒在环境中的存活潜力和感染风险[J]. 疾病监测, 2021, 36 (1): 16- 22. URL
 | 
																													
																						| 52 | MATSON M J ,  YINDA C K ,  SEIFERT S N , et al.  Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum[J]. Emerging Infectious Diseases, 2020, 26 (9): 2276- 2278. doi: 10.3201/eid2609.202267
 | 
																													
																						| 53 | FEARS A C ,  KLIMSTRA W B ,  DUPREX P , et al.  Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions[J]. MedRxiv, 2020, doi: 10.1101/2020.04.13.20063784
 | 
																													
																						| 54 | DAI Manman ,  LI Huanan ,  NAN Yan , et al.  Long-term survival of salmon-attached SARS-CoV-2 at 4℃ as a potential source of transmission in seafood markets[J]. BioRxiv, 2020, doi: 10.1101/2020.09.06.284695
 | 
																													
																						| 55 | FOLADORI P ,  CUTRUPI F ,  SEGATA N , et al.  SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review[J]. Science of the Total Environment, 2020, 743, 140444. doi: 10.1016/j.scitotenv.2020.140444
 | 
																													
																						| 56 | 杨书慧, 吴颐杭, 屈雅静, 等.  病毒在无生命物体表面存活时间及其影响因素分析[J]. 环境科学研究, 2020, 33 (7): 1618- 1623. URL
 | 
																													
																						| 57 | BAYARRI B ,  CRUZ-ALCALDE A ,  LOPEZ-VINENT N , et al.  Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses[J]. Journal of Hazardous Materials, 2021, 415, 125658. doi: 10.1016/j.jhazmat.2021.125658
 | 
																													
																						| 58 | TIZAOUI C .  Ozone: A potential oxidant for COVID-19 virus(SARS- CoV-2)[J]. Ozone: Science & Engineering, 2020, 42 (5): 378- 385. URL
 | 
																													
																						| 59 | CRISCUOLO E ,  DIOTTI R A ,  FERRARESE R , et al.  Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials[J]. Emerging Microbes & Infections, 2021, 10 (1): 206- 210. URL
 | 
																													
																						| 60 | FERNÁNDEZ-CUADROS M E ,  ALBALADEJO-FLORIN M J ,  PEÑALORA D , et al.  Ozone (O3) and SARS-CoV-2:Physiological bases and their therapeutic possibilities according to COVID-19 evolutionary stage[J]. SN Comprehensive Clinical Medicine, 2020, 2 (8): 1094- 1102. doi: 10.1007/s42399-020-00328-7
 |