1 |
|
|
DAI Xiaohu, ZHANG Chen, ZHANG Linwei,et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 57(3):1-5. doi: 10.13789/j.cnki.wwe1964.2021.03.001
|
2 |
MO Weiwei, ZHANG Qiong. Can municipal wastewater treatment systems be carbon neutral?[J]. Journal of Environmental Management, 2012, 112:360-367. doi: 10.1016/j.jenvman.2012.08.014
|
3 |
GU Yifan, LI Yue, LI Xuyao,et al. The feasibility and challenges of energy self-sufficient wastewater treatment plants[J]. Applied Energy, 2017, 204:1463-1475. doi: 10.1016/j.apenergy.2017.02.069
|
4 |
LOOSDRECHT M, BRDJANOVIC D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191):1452-1453. doi: 10.1126/science.1255183
|
5 |
GONG Hui, JIN Zhengyu, XU Heng,et al. Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane(CAEM)-based pre-concentration process[J]. Chemical Engineering Journal, 2018, 342:304-309. doi: 10.1016/j.cej.2018.02.086
|
6 |
郝晓地,魏静,曹亚莉. 美国碳中和运行成功案例——Sheboygan污水处理厂[J]. 中国给水排水,2014,30(24):1-6.
|
|
HAO Xiaodi, WEI Jing, CAO Yali. A successful case of carbon-neutral operation in America:Sheboygan WWTP[J]. China Water & Wastewater,2014,30(24):1-6.
|
7 |
郝晓地,金铭,胡沅胜. 荷兰未来污水处理新框架——NEWs及其实践[J]. 中国给水排水,2014,30(20):7-15.
|
|
HAO Xiaodi, JIN Ming, HU Yuansheng. Framework of future wastewater treatment in the Netherlands:NEWs and their practices[J]. China Water & Wastewater,2014,30(20):7-15.
|
8 |
郝晓地,任冰倩,曹亚莉. 德国可持续污水处理工程典范——Steinhof厂[J]. 中国给水排水,2014,30(22): 6-11.
|
|
HAO Xiaodi, REN Bingqian, CAO Yali. An engineering model of sustainable wastewater treatment:Steinhof WWTP at Braunschweig in Germany[J]. China Water & Wastewater,2014,30(22):6-11.
|
9 |
NOWAK O, ENDERLE P, VARBANOV P. Ways to optimize the energy balance of municipal wastewater systems:Lessons learned from Austrian applications[J]. Journal of Cleaner Production, 2015, 88:125-131. doi: 10.1016/j.jclepro.2014.08.068
|
10 |
QU Jiuhui, WANG Hongchen, WANG Kaijun,et al. Municipal wastewater treatment in China:Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6):1-7. doi: 10.1007/s11783-019-1172-x
|
11 |
LU Lu, GUEST J S, PETERS C A,et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability, 2018, 1(12):750-758. doi: 10.1038/s41893-018-0187-9
|
12 |
HUANG Baocheng, HE Chuanshu, FAN Niansi,et al. Envisaging wastewater-to-energy practices for sustainable urban water pollution control:Current achievements and future prospects[J]. Renewable & Sustainable Energy Reviews, 2020, 134:110134. doi: 10.1016/j.rser.2020.110134
|
13 |
郝晓地,李季,曹达啟. 污水处理碳中和运行需要污泥增量[J]. 中国给水排水,2016,32(12):1-6.
|
|
HAO Xiaodi, LI Ji, CAO Daqi. Carbon-neutral operation of wastewater treatment needing sludge increment[J]. China Water & Wastewater,2016,32(12):1-6.
|
14 |
JIMENEZ J, MILLER M, BOTT C,et al. High-rate activated sludge system for carbon management—Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015, 87:476-482. doi: 10.1016/j.watres.2015.07.032
|
15 |
MEERBURG F A, BOON N, WINCKEL T VAN,et al. Toward energy-neutral wastewater treatment:A high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179:373-381. doi: 10.1016/j.biortech.2014.12.018
|
16 |
REMY C, BOULESTREAU M, LESJEAN B. Proof of concept for a new energy-positive wastewater treatment scheme[J]. Water Science and Technology, 2014, 70(10):1709-1716. doi: 10.2166/wst.2014.436
|
17 |
HENDRIKS A, ZEEMAN G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18. doi: 10.1016/j.biortech.2008.05.027
|
18 |
|
|
HE Qiang, JI Fangying, LI Jiajie. Approaches and new technologies of sludge treatment and disposal[J]. Water & Wastewater Engineering, 2016, 52(2):1-3. doi: 10.3969/j.issn.1002-8471.2016.02.001
|
19 |
宋新新,林甲,刘杰,等. 面向未来污水处理技术应用研究现状及工程实践[J]. 环境科学学报,2021,41(1):39-53.
|
|
SONG Xinxin, LIN Jia, LIU Jie,et al. The current situation and engineering practice of sewage treatment technology facing the future[J]. Acta Scientiae Circumstantiae,2021,41(1):39-53.
|
20 |
郝晓地,程慧芹,胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水,2014,30(22):1-5.
|
|
HAO Xiaodi, CHENG Huiqin, HU Yuansheng. International pioneer of carbon-neutral operation of wastewater treatment:A case study at strass in Austria[J]. China Water & Wastewater,2014,30(22):1-5.
|
21 |
AICHINGER P, WADHAWAN T, KUPRIAN M,et al. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge:1 plus 1 equals more than 2 in terms of biogas production and solids reduction[J]. Water Research, 2015, 87:416-423. doi: 10.1016/j.watres.2015.07.033
|
22 |
JANSEN J LA COR, GRUVBERGER C, HANNER N,et al. Digestion of sludge and organic waste in the sustainability concept for Malmö,Sweden[J]. Water Science & Technology, 2004, 49(10):163-169. doi: 10.2166/wst.2004.0634
|
23 |
COSTA J C, GONALVES P R, NOBRE A,et al. Biomethanation potential of Macroalgae ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge[J]. Bioresource Technology, 2012, 114:320-326. doi: 10.1016/j.biortech.2012.03.011
|
24 |
NOUTSOPOULOS C, MAMAIS D, ANTONIOU K,et al. Anaerobic co-digestion of grease sludge and sewage sludge:The effect of organic loading and grease sludge content[J]. Bioresource Technology, 2013, 131(9):452-459. doi: 10.1016/j.biortech.2012.12.193
|
25 |
PITK P, KAPARAJU P, PALATSI J,et al. Co-digestion of sewage sludge and sterilized solid slaughterhouse waste:Methane production efficiency and process limitations[J]. Bioresource Technology, 2013, 134(2):227-232. doi: 10.1016/j.biortech.2013.02.029
|
26 |
DUNG T N B,SEN B, CHEN C C,et al. Food waste to bioenergy via anaerobic processes[J]. Energy Procedia, 2014, 61:307-312. doi: 10.1016/j.egypro.2014.11.1113
|
27 |
SARPONG G, GUDE V G, MAGBANUA B S,et al. Evaluation of energy recovery potential in wastewater treatment based on codigestion and combined heat and power schemes[J]. Energy Conversion and Management, 2020, 222:113147. doi: 10.1016/j.enconman.2020.113147
|
28 |
郝晓地,方晓敏,李季,等. 污水碳中和运行潜能分析[J]. 中国给水排水,2018,34(10):11-16.
|
|
HAO Xiaodi, FANG Xiaomin, LI Ji,et al. Analysis of potential in carbon-neutral operation of WWTPs[J]. China Water & Wastewater,2018,34(10):11-16.
|
29 |
MO Weiwei, ZHANG Qiong. Energy-nutrients-water nexus:Integrated resource recovery in municipal wastewater treatment plants[J]. Journal of Environmental Management, 2013, 127:255-267. doi: 10.1016/j.jenvman.2013.05.007
|
30 |
NAKAKUBO T, TOKAI A, OHNO K. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery[J]. Journal of Cleaner Production, 2012, 32:157-172. doi: 10.1016/j.jclepro.2012.03.026
|
31 |
柴春燕. 城镇污水处理厂温室气体排放规律及热岛效应研究[D]. 哈尔滨:哈尔滨工业大学,2017.
|
|
CHAI Chunyan. Study on the characteristics of greenhouse gas emissions and heat island effect of municipal wastewater treatment plants[D]. Harbin:Harbin Institute of Technology,2017.
|
32 |
CORNEL P, SCHAUM C. Phosphorus recovery from wastewater:Needs,technologies and costs[J]. Water Science & Technology, 2009, 59(6):1069-1076. doi: 10.2166/wst.2009.045
|
33 |
ZHOU Kaixin, BARJENBRUCH M, KABBE C,et al. Phosphorus recovery from municipal and fertilizer wastewater:China’s potential and perspective[J]. Journal of Environmental Sciences, 2017, 52(2): 151-159. doi: 10.1016/j.jes.2016.04.010
|
34 |
郝晓地,于晶伦,刘然彬,等. 剩余污泥焚烧灰分磷回收及其技术进展[J]. 环境科学学报,2020,40(4): 1149-1159.
|
|
HAO Xiaodi, YU Jinglun, LIU Ranbin,et al. Advances of phosphorus recovery from the incineration ashes of excess sludge and its associated technologies[J]. Acta Scientiae Circumstantiae,2020,40(4): 1149-1159.
|
35 |
MENESES M, PASQUALINO J C, CASTELLS F. Environmental assessment of urban wastewater reuse:Treatment alternatives and applications[J]. Chemosphere, 2010, 81(2):266-272. doi: 10.1016/j.chemosphere.2010.05.053
|
36 |
卢睿卿,杨光,宫徽,等. 新加坡新生水工艺对我国生产高品质回用水的启示[J]. 中国给水排水,2019,35(14):36-40.
|
|
LU Ruiqing, YANG Guang, GONG Hui,et al. Enlightenment of Singapore’s NEWater technology to the production of high quality reclaimed water in China[J]. China Water & Wastewater,2019,35(14):36-40.
|
37 |
郝晓地,孟祥挺,付昆明. 新加坡再生水厂能耗目标及其技术发展方向[J]. 中国给水排水,2014,30(24):7-11.
|
|
HAO Xiaodi, MENG Xiangting, FU Kunming. Targeted energy consumption and associated technologies developed in water reclamation plants in Singapore[J]. China Water & Wastewater,2014,30(24):7-11.
|
38 |
HOFMAN J, HOFMAN-CARIS R, NEDERLOF M,et al. Water and energy as inseparable twins for sustainable solutions[J]. Water Science and Technology, 2011, 63(1):88-92. doi: 10.2166/wst.2011.013
|
39 |
HAO Xiaodi, LI Ji, LOOSDRECHT M C M VAN,et al. Energy recovery from wastewater:Heat over organics[J]. Water Research,2019,161:74-77.
|
40 |
HAO Xiaodi, LIU Raibin, HUANG Xin. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87:424-431. doi: 10.1016/j.watres.2015.05.050
|
41 |
AVERFALK H, INGVARSSON P, PERSSON U,et al. Large heat pumps in Swedish district heating systems[J]. Renewable & Sustainable Energy Reviews, 2017, 79:1275-1284. doi: 10.1016/j.rser.2017.05.135
|
42 |
SPRIET J, MCNABOLA A, NEUGEBAUER G,et al. Spatial and temporal considerations in the performance of wastewater heat recovery systems[J]. Journal of Cleaner Production, 2020, 247:119583. doi: 10.1016/j.jclepro.2019.119583
|
43 |
HUANG Dong, LIU Xiuhong, JIANG Songzhu,et al. Current state and future perspectives of sewer networks in urban China[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3):1-16. doi: 10.1007/s11783-018-1023-1
|
44 |
JIN Lingyun, ZHANG Guangming, TIAN Huifang. Current state of sewage treatment in China[J]. Water Research, 2014, 66:85-98. doi: 10.1016/j.watres.2014.08.014
|