1 |
CHEN Dan, WANG Hongyu, YANG Kai, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017
|
2 |
LU Xinxin, WANG Yi, WANG Wenhuai, et al. Characteristics of rapid-biofiltering anammox reactor (RBAR) for low nitrogen wastewater treatment[J]. Bioresource Technology, 2020, 318: 124066. doi: 10.1016/j.biortech.2020.124066
|
3 |
|
|
DI Fei, SUI Qianwen, CHEN Yanlin, et al. Advanced nitrogen removal based on anammox process treating municipal wastewater[J]. Acta Scientiae Circumstantiae, 2021, 41(1): 83-91. doi: 10.13671/j.hjkxxb.2020.0512
|
4 |
KOCAMEMI B A, DITYAPAK D, SEMERCI N, et al. Anammox start-up strategies: The use of local mixed activated sludge seed versus Anammox seed[J]. Water Science and Technology, 2018, 78(9): 1901-1915. doi: 10.2166/wst.2018.431
|
5 |
WANG Haiyue, PENG Ling, MAO Nianjia, et al. Effects of Fe 3+ on microbial communities shifts, functional genes expression and nitrogen transformation during the start-up of Anammox process[J]. Bioresource Technology, 2021, 320: 124326. doi: 10.1016/j.biortech.2020.124326
|
6 |
XING Chongyang, FAN Yuchen, CHEN Xuan, et al. A self-assembled nanocompartment in anammox bacteria for resisting intracelluar hydroxylamine stress[J]. Science of the Total Environment, 2020, 717: 137030. doi: 10.1016/j.scitotenv.2020.137030
|
7 |
|
|
WANG Jianhui, YOU Qingguo, SHEN Yu, et al. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process[J]. Environmental Chemistry, 2021, 40(4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
|
8 |
ZHANG Lei, OKABE S. Ecological niche differentiation among anammox bacteria[J]. Water Research, 2020, 171: 115468. doi: 10.1016/j.watres.2020.115468
|
9 |
洪义国, 黄天政, 李益本, 等. 基于数据库分析不同类型生境中厌氧氨氧化细菌的多样性分布特征[J]. 微生物学报, 2019, 59(6): 1143-1155.
|
|
HONG Yiguo, HUANG Tianzheng, LI Yiben, et al. Community structure and distribution of anammox bacteria in different habitat[J]. Acta Microbiologica Sinica, 2019, 59(6): 1143-1155.
|
10 |
洪义国, 李益本, 吴佳鹏, 等. 高通量测序分析多种典型生境中厌氧氨氧化细菌的多样性分布特征[J]. 微生物学通报, 2019, 46(11): 2865-2876.
|
|
HONG Yiguo, LI Yiben, WU Jiapeng, et al. Diversity analysis of anaerobic ammonium-oxidizing bacteria in typical habitats by high throughput sequencing[J]. Microbiology China, 2019, 46(11): 2865-2876.
|
11 |
LU Huifeng, LI Yiyu, SHAN Xiaoyu, et al. A holistic analysis of ANAMMOX process in response to salinity: From adaptation to collapse[J]. Separation and Purification Technology, 2019, 215: 342-350. doi: 10.1016/j.seppur.2019.01.016
|
12 |
刘兰, 明语真, 吕爱萍, 等. 厌氧氨氧化细菌的研究进展[J]. 微生物学报, 2021, 61(4): 969-986.
|
|
LIU Lan, MING Yuzhen, Aiping LÜ, et al. Recent advance on the anaerobic ammonium oxidation bacteria[J]. Acta Microbiologica Sinica, 2021, 61(4): 969-986.
|
13 |
WANG Jinxing, LIANG Jidong, SUN Li, et al. Granule-based immobilization and activity enhancement of anammox biomass via PVA/CS and PVA/CS/Fe gel beads[J]. Bioresource Technology, 2020, 309: 123448. doi: 10.1016/j.biortech.2020.123448
|
14 |
WANG Weigang, WANG Junjie, WANG Han, et al. Anammox granule enlargement by heterogenous granule self-assembly[J]. Water Research, 2020, 187: 116454. doi: 10.1016/j.watres.2020.116454
|
15 |
WANG Weigang, WANG Han, JIANG Zhuwu, et al. Visual evidence for anammox granules expanding their size by aggregation of anammox micro-granules[J]. Science of the Total Environment, 2020, 745: 141052. doi: 10.1016/j.scitotenv.2020.141052
|
16 |
|
|
TANG Chongjian, ZHENG Ping, ZHANG Lei. Enrichment techniques for anammox biomass[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1421-1426, 1434. doi: 10.3321/j.issn:1000-6613.2009.08.026
|
17 |
KANG DA, LI Yiyu, XU Dongdong, et al. Deciphering correlation between chromaticity and activity of anammox sludge[J]. Water Research, 2020, 185: 116184. doi: 10.1016/j.watres.2020.116184
|
18 |
胡倩怡, 郑平, 康达. 厌氧氨氧化菌的种类、特性与检测[J]. 应用与环境生物学报, 2017, 23(2): 384-391.
|
|
HU Qianyi, ZHENG Ping, KANG Da. Taxonomy, characteristics, and biotechniques used for the analysis of anaerobic ammonium oxidation bacteria[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(2): 384-391.
|
19 |
KARTAL B, VAN NIFTRIK L, RATTRAY J, et al. Candidatus ‘ brocadia fulgida’: An autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiology Ecology, 2008, 63(1): 46-55. doi: 10.1111/j.1574-6941.2007.00408.x
|
20 |
KARTAL B, RATTRAY J, VAN NIFTRIK L A, et al. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49. doi: 10.1016/j.syapm.2006.03.004
|
21 |
ZHANG Tianqi, WEI Nan, WU Guangxue. Autotrophic nitrogen removal and potential microbial interactions in anammox systems with different ammonia and organic carbon concentrations[J]. Journal of Water Process Engineering, 2020, 37: 101493. doi: 10.1016/j.jwpe.2020.101493
|
22 |
YANG Yuchun, PAN Jie, ZHOU Zhichao, et al. Complex microbial nitrogen-cycling networks in three distinct anammox-inoculated wastewater treatment systems[J]. Water Research, 2020, 168: 115142. doi: 10.1016/j.watres.2019.115142
|
23 |
ZUO Fumin, SUI Qianwen, ZHENG Rui, et al. In situ startup of a full-scale combined partial nitritation and anammox process treating swine digestate by regulation of nitrite and dissolved oxygen[J]. Bioresource Technology, 2020, 315: 123837. doi: 10.1016/j.biortech.2020.123837
|
24 |
|
|
WANG Wei, YAN Wenkai, LI Bolin, et al. Effects of HRT on anaerobic ammonia-oxidation system and unstable recovery strategy[J]. Industrial Safety and Environmental Protection, 2019, 45(11): 94-98. doi: 10.3969/j.issn.1001-425X.2019.11.023
|
25 |
SHI Liangliang, DU Rui, PENG Yongzhen. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology, 2019, 283: 18-27. doi: 10.1016/j.biortech.2019.03.063
|
26 |
姬玉欣, 诸美红, 陈辉, 等. 高负荷厌氧氨氧化反应器的研究进展[J]. 化工进展, 2013, 32(8): 1914-1920.
|
|
JI Yuxin, ZHU Meihong, CHEN Hui, et al. Research progress of high-loaded ANAMMOX reactors[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1914-1920.
|
27 |
徐师, 张大超, 肖隆文, 等. 厌氧氨氧化反应快速启动方法的研究进展[J]. 环境工程, 2018, 36(6): 18-21.
|
|
XU Shi, ZHANG Dachao, XIAO Longwen, et al. Research progress on quick start-up process of the anaerobic ammonia oxidation process[J]. Environmental Engineering, 2018, 36(6): 18-21.
|
28 |
CHEN Hui, LIU Tao, LI Jie, et al. Larger anammox granules not only harbor higher species diversity but also support more functional diversity[J]. Environmental Science & Technology, 2020, 54(22): 14664-14673. doi: 10.1021/acs.est.0c02609
|
29 |
|
|
Gang LÜ, XU Lezhong, SHEN Yaoliang, et al. Quick start-up of anaerobic ammonium oxidation process[J]. Environmental Science, 2017, 38(3): 1116-1121. doi: 10.13227/j.hjkx.201609051
|
30 |
|
|
WANG Haiyue, PENG Ling, MAO Nianjia, et al. Effect of Fe 3+ on nitrogen removal of Anammox in the presence of organic matter[J]. China Environmental Science, 2021, 41(4): 1672-1680. doi: 10.3969/j.issn.1000-6923.2021.04.020
|
31 |
|
|
WANG Heng, LI Bolin, WANG Wei, et al. Comparison of performance of modified anammox UASB reactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1073-1081. doi: 10.12030/j.cjee.201809130
|
32 |
XUE Yi, MA Haiyuan, KONG Zhe, et al. Bulking and floatation of the anammox-HAP granule caused by low phosphate concentration in the anammox reactor of expanded granular sludge bed (EGSB)[J]. Bioresource Technology, 2020, 310: 123421. doi: 10.1016/j.biortech.2020.123421
|
33 |
ADAMS M, XIE Junxiang, KABORE A W J, et al. Research advances in anammox granular sludge: A review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(5): 631-674. doi: 10.1080/10643389.2020.1831358
|
34 |
|
|
YANG Jinhong, YU Jingjie, CAI Mansha, et al. Quick start-up of anammox-HAP granular sludge system[J]. China Environmental Science, 2020, 40(11): 4744-4752. doi: 10.3969/j.issn.1000-6923.2020.11.013
|
35 |
郭萌蕾, 姜滢, 谢嘉玮, 等. 厌氧氨氧化颗粒污泥性质及影响因素研究进展[J]. 化学通报, 2020, 83(1): 30-34.
|
|
GUO Menglei, JIANG Ying, XIE Jiawei, et al. Research progress in properties and influencing factors of anaerobic ammonium oxide granular sludge[J]. Chemistry, 2020, 83(1): 30-34.
|
36 |
TAN Hao, WANG Yunyan, TANG Xi, et al. Quantitative determination of cavitation formation and sludge flotation in Anammox Granules by using a new diffusion-reaction integrated mathematical model[J]. Water Research, 2020, 174: 115632. doi: 10.1016/j.watres.2020.115632
|
37 |
|
|
ZHANG Yachao, ZHANG Jing, HOU Aiyue, et al. Effect of extracellular polymers and signal molecules on the activity of ANAMMOX sludge[J]. China Environmental Science, 2019, 39(10): 4133-4140. doi: 10.3969/j.issn.1000-6923.2019.10.012
|
38 |
LIU Wenru, YANG Dianhai, CHEN Wenjing, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45-52. doi: 10.1016/j.biortech.2017.01.050
|
39 |
|
|
WANG Xiaotong, YANG Hong. Analysis of performance and microbial diversity of ANAMMOX sludge based on particle size differentiation[J]. Environmental Science, 2021, 42(4): 1930-1938. doi: 10.1016/j.biortech.2021.125188
|
40 |
TANG Chongjian, ZHENG Ping, WANG Caihua, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018
|
41 |
GILBERT E M, AGRAWAL S, KARST S M, et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology, 2014, 48(15): 8784-8792. doi: 10.1021/es501649m
|
42 |
|
|
ZHANG Zhiqiang, GUAN Xiao, Feng LÜ, et al. Influencing characteristics and mechanisms of suspended carriers on anammox MBR performance[J]. China Environmental Science, 2018, 38(3): 929-934. doi: 10.3969/j.issn.1000-6923.2018.03.016
|
43 |
ADAMS M, XIE Junxiang, XIE Jiawei, et al. The effect of carrier addition on Anammox start-up and microbial community: A review[J]. Reviews in Environmental Science and Bio, 2020, 19(2): 355-368. doi: 10.1007/s11157-020-09530-4
|
44 |
|
|
WANG Jun, YU Deshuang, WANG Xiaoxia, et al. Performance and microbial analysis of ANAMMOX system with different type of suspended carriers in ASSBR[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2438-2448. doi: 10.1016/j.envres.2020.109581
|
45 |
|
|
WANG Shuya, LIU Lingjie, WANG Fen, et al. Variation of operating and microbial community of Anammox process with convertional and modified filler by low temperature plasma technology[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 285-294. doi: 10.12030/j.cjee.201904197
|
46 |
安雪迪, 彭永臻, 李自强, 等. 有机物冲击对颗粒污泥/填料厌氧氨氧化反应器的影响[J]. 中国给水排水, 2018, 34(15): 17-23.
|
|
AN Xuedi, PENG Yongzhen, LI Ziqiang, et al. Effect of organic matter shock on granular sludge/carriers anaerobic ammonium oxidation reactor[J]. China Water & Wastewater, 2018, 34(15): 17-23.
|
47 |
|
|
JI Qian, PENG Dangcong, ZHAO Wenzhao. Determination of decay coefficients of Anammox bacteria under anoxic and anaerobic conditions[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 3012-3018. doi: 10.12030/j.cjee.201901008
|
48 |
ZHANG Quan, ZHANG Xian, BAI Yuhui, et al. Exogenous extracellular polymeric substances as protective agents for the preservation of anammox granules[J]. Science of the Total Environment, 2020, 747: 141464. doi: 10.1016/j.scitotenv.2020.141464
|
49 |
ZHOU Yuanyuan, SHAO Wenli, LIU Yongdi, et al. Genome-based analysis to understanding rapid resuscitation of cryopreserved anammox consortia via sequential supernatant addition[J]. Science of the Total Environment, 2020, 744: 140785. doi: 10.1016/j.scitotenv.2020.140785
|
50 |
KAEWYAI J, NOOPHAN P, WANTAWIN C, et al. Recovery of enriched anammox biofilm cultures after storage at cold and room temperatures for 164 days[J]. International Biodeterioration & Biodegradation, 2019, 137: 1-7. doi: 10.1016/j.ibiod.2018.11.003
|
51 |
JI Yuxin, JIN Rencun. Effect of different preservation conditions on the reactivation performance of anammox sludge[J]. Separation and Purification Technology, 2014, 133: 32-39. doi: 10.1016/j.seppur.2014.06.029
|
52 |
ALI M, OSHIKI M, Simple OKABE S., rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium “Candidatus Brocadia sinica” [J]. Water Research, 2014, 57: 215-222.
|
53 |
|
|
ZHANG Qian, XU Xiaochen, WANG Chao, et al. Technique of preparation and preservation of dry powder agent of anammox bacteria[J]. China Environmental Science, 2017, 37(12): 4630-4636. doi: 10.3969/j.issn.1000-6923.2017.12.028
|
54 |
王莹, 杨开亮, 王博, 等. 厌氧氨氧化菌的保藏与活性恢复研究进展[J]. 水处理技术, 2019, 45(7): 6-12.
|
|
WANG Ying, YANG Kailiang, WANG Bo, et al. Research progress of preservation and reactivation of anaerobic ammonium oxidation bacteria[J]. Technology of Water Treatment, 2019, 45(7): 6-12.
|
55 |
|
|
ZHANG Xingxing, WANG Xinzhu, YIN Wen, et al. Research progress on the treatment of municipal sewage by Anammox technology[J]. Industrial Water Treatment, 2020, 40(1): 1-7. doi: 10.11894/iwt.2019-0149
|
56 |
|
|
TANG Chongjian, ZHENG Ping, CHEN Xiaoguang. Substrate inhibition and recovery strategies for anammox process[J]. Journal of Basic Science and Engineering, 2010, 18(4): 561-570. doi: 10.3969/j.issn.1005-0930.2010.04.003
|
57 |
高远, 程军, 张亮, 等. 高氨氮PN/A脱氮工艺: 亚硝态氮抑制后的恢复策略[J]. 环境工程, 2019, 37(1): 35-40.
|
|
GAO Yuan, CHENG Jun, ZHANG Liang, et al. High-strength ammonoium pn/a nitrogen removal process: Recovery strategy after inhibition of nitrite nitrogen[J]. Environmental Engineering, 2019, 37(1): 35-40.
|