1 |
EUROSTAT E C. Sewage sludge production and disposal[R/OL]. Luxembourg,2018.
|
2 |
AWA. Australian biosolids statistics[R/OL]. New South Wales,2018.
|
3 |
EPA USA. Biosolids generation,use,and disposal in the United States[R/OL]. Washington,DC.,2018.
|
4 |
|
5 |
CAO Bingdi, ZHANG Tao, ZHANG Weijun,et al. Enhanced technology based for sewage sludge deep dewatering:A critical review[J]. Water Research, 2021, 189:116650. doi: 10.1016/j.watres.2020.116650
|
6 |
QI Ying, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties-A review[J]. Chemical Engineering Journal, 2011, 171(2):373-384. doi: 10.1016/j.cej.2011.04.060
|
7 |
王硕,陈晓光,陈宇,等. 城市污水处理厂污泥深度脱水技术研究进展[J]. 环境科学与技术,2015,38(S2):186-190.
|
|
WANG Shuo, CHEN Xiaoguang, CHEN Yu,et al. Recent advances on deep dewatering of sludge in wastewater treatment plant[J]. Environmental Science & Technology,2015,38(S2):186-190.
|
8 |
|
|
XU Huimin, QIN Weihua, LI Zhonglin,et al. Effects of double frequency ultrasound improving dehydration property of waste activated sludge in pretreatment[J]. Journal of Ecology and Rural Environment, 2018, 34(4):380-384. doi: 10.11934/j.issn.1673-4831.2018.04.012
|
9 |
|
|
WU Yan, PING Wei, WANG Xiang,et al. Study on dewatering effect of sewage sludge by adding rice husk flour[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2):229-234. doi: 10.11975/j.issn.1002-6819.2019.02.029
|
10 |
|
|
YU Xiao, LI Yanbo, ZHANG Wenzhe,et al. Research progress in the improvement of sludge dewatering by chemical conditioning method[J]. Industrial Water Treatment, 2018, 38(11):1-6. doi: 10.11894/1005-829x.2018.38(11).001
|
11 |
WU Yan, ZHANG Panyue, ZHANG Haibo,et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride[J]. Bioresource Technology, 2016, 205:258-263. doi: 10.1016/j.biortech.2016.01.020
|
12 |
WANG S, YANG Y K, CHEN X G,et al. Effects of bamboo powder and rice husk powder conditioners on sludge dewatering and filtrate quality[J]. International Biodeterioration & Biodegradation, 2017, 124:288-296. doi: 10.1016/j.ibiod.2017.05.013
|
13 |
WU Boran, DAI Xiaohu, CHAI Xiaoli. Critical review on dewatering of sewage sludge:Influential mechanism,conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180:115912. doi: 10.1016/j.watres.2020.115912
|
14 |
CAO Bingdi, WANG Ruilu, ZHANG Weijun,et al. Carbon-based materials reinforced waste activated sludge electro-dewatering for synchronous fuel treatment[J]. Water Research, 2019, 149:533-542. doi: 10.1016/j.watres.2018.10.082
|
15 |
Nelson R F, Brattlof B D. Sludge pressure filtration with fly ash addition[J]. Water Pollution Control Federation,1979,51(5):1024-1031.
|
16 |
|
|
ZHU Mengyang, LI Qing, WANG Jin,et al. The effect of graphite on the microbial metabolite substances production and characteristics of anaerobic sludge microorganism[J]. Acta Petrologica et Mineralogica, 2016, 35(4):721-728. doi: 10.3969/j.issn.1000-6524.2016.04.012
|
17 |
THAPA K B, QI Y, CLAYTON S A,et al. Lignite aided dewatering of digested sewage sludge[J]. Water Research, 2009, 43(3):623-634. doi: 10.1016/j.watres.2008.11.005
|
18 |
Czaczyk K, Myszka K. Biosynthesis of extracellular polymeric substances(EPS) and its role in microbial biofilm formation[J]. Polish Journal of Environmental Studies,2007,16(6):799-806.
|
19 |
ZHAO Y Q, BACHE D H. Conditioning of alum sludge with polymer and gypsum[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 194(1/2/3):213-220. doi: 10.1016/s0927-7757(01)00788-9
|
20 |
LIN Yingfeng, JING S R, LEE D Y. Recycling of wood chips and wheat dregs for sludge processing[J]. Bioresource Technology, 2001, 76(2):161-163. doi: 10.1016/s0960-8524(00)00098-5
|
21 |
ZHANG Xiaochun, KANG Huashan, ZHANG Qingrui,et al. The porous structure effects of skeleton builders in sustainable sludge dewatering process[J]. Journal of Environmental Management, 2019, 230:14-20. doi: 10.1016/j.jenvman.2018.09.049
|
22 |
MOWLA D, TRAN H N, ALLEN D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes[J]. Biomass and Bioenergy, 2013, 58:365-378. doi: 10.1016/j.biombioe.2013.09.002
|
23 |
刘学鹏,戴财胜,贾飞跃,等. 基于煤粉的污泥调质与机械脱水的实验研究[J]. 环境科学与技术,2016,39(2):99-102.
|
|
LIU Xuepeng, DAI Caisheng, JIA Feiyue,et al. Experimental study on sludge conditioning for mechanical dewatering of sludge by using coal[J]. Environmental Science & Technology,2016,39(2):99-102.
|
24 |
FANG M, WONG J W C, MA K K,et al. Co-composting of sewage sludge and coal fly ash:Nutrient transformations[J]. Bioresource Technology, 1999, 67(1):19-24. doi: 10.1016/s0960-8524(99)00095-4
|
25 |
CHEN Changya, ZHANG Panyue, ZENG Guangming,et al. Sewage sludge conditioning with coal fly ash modified by sulfuric acid[J]. Chemical Engineering Journal, 2010, 158(3):616-622. doi: 10.1016/j.cej.2010.02.021
|
26 |
STELLACCI P, LIBERTI L, NOTARNICOLA M,et al. Valorization of coal fly ash by mechano-chemical activation:Part II. Enhancing pozzolanic reactivity[J]. Chemical Engineering Journal, 2009, 149(1/2/3):19-24. doi: 10.1016/j.cej.2008.06.042
|
27 |
YUAN D Q, WANG Y L, FENG J. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge[J]. Water Research, 2014, 56:56-65. doi: 10.1016/j.watres.2014.02.028
|
28 |
XU Wenqing, PIGNATELLO J J, MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13):7129-7136. doi: 10.1021/es4012367
|
29 |
MORE T T, YADAV J S S, YAN S,et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144:1-25. doi: 10.1016/j.jenvman.2014.05.010
|
30 |
Alexander B, Stina J, Salar H,et al. Sewage sludge-based activated carbon:Production and potential in wastewater and stormwater treatment[J]. Environmental Management Chemical Process Engineering,2018,12:1-60.
|
31 |
ZHANG Weijun, TANG Mingyue, YANG Peng,et al. Micro-interfacial mechanisms on sludge dewaterability enhancement using cerium chloride for preparation of carbon-based functional material[J]. Journal of Hazardous Materials, 2020, 386:121930. doi: 10.1016/j.jhazmat.2019.121930
|
32 |
LI Liqing, DENG Yun, AI Jing,et al. Fe/Mn loaded sludge-based carbon materials catalyzed oxidation for antibiotic degradation:Persulfate vs H 2O 2 as oxidant[J]. Separation and Purification Technology, 2021, 263:118409. doi: 10.1016/j.seppur.2021.118409
|
33 |
RAMACHANDRA R H, DEVATHA C P. Experimental investigation on sludge dewatering using granulated blast furnace slag as skeleton material[J]. Environmental Science and Pollution Research International, 2020, 27(11):11870-11881. doi: 10.1007/s11356-020-07614-w
|
34 |
XUE Qiang, CHEN Yijun. Experimental study on municipal sludge dewatering capacity by using quicklime and slag[J]. Desalination and Water Treatment, 2014, 54:1499-1506. doi: 10.1080/19443994.2013.821038
|
35 |
|
|
WANG Yanshan, WANG Weihong, TAI Mingqing,et al. Enhancing dewaterability of fuel ethanol producing anaerobic digestion sludge by microwave combined with desulfurization gypsum[J]. Chinese Journal of Environmental Engineering, 2017, 11(10):5609-5614. doi: 10.12030/j.cjee.201612022
|
36 |
黄绍松,梁嘉林,张斯玮,等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报,2018,38(5):1906-1919.
|
|
HUANG Shaosong, LIANG Jialin, ZHANG Siwei,et al. A comprehensive mechanism for deeply dewatering sludge using Fenton’s reagent with lime[J]. Acta Scientiae Circumstantiae,2018,38(5):1906-1919.
|
37 |
WANG Liping, ZHANG Lei, LI Aimin. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:Influence of operating conditions and the process energetics[J]. Water Research, 2014, 65:85-97. doi: 10.1016/j.watres.2014.07.020
|
38 |
WANG Liping, LI Aimin. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:The dewatering performance and the characteristics of products[J]. Water Research, 2015, 68:291-303. doi: 10.1016/j.watres.2014.10.016
|
39 |
关若楠,时亚飞,梁莎,等. 复合调理脱水污泥热解残渣中重金属形态分布[J]. 环境科学与技术,2017,40(3):74-78.
|
|
GUAN Ruonan, SHI Yafei, LIANG Sha,et al. Speciation distribution of heavy metals in pyrolysis residue of dewatered sewage sludge after conditioned with the composite conditioners[J]. Environmental Science & Technology,2017,40(3):74-78.
|
40 |
WANG Wei, LUO Yuxiang, QIAO Wei. Possible solutions for sludge dewatering in China[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(1):102-107. doi: 10.1007/s11783-010-0001-z
|
41 |
甘雁飞,周宁娟,张若晨,等. 废水处理厂剩余污泥水热减量及改善脱水性能的研究[J]. 环境工程,2017,35(4):91-96.
|
|
GAN Yanfei, ZHOU Ningjuan, ZHANG Ruochen,et al. Study on excess sludge reduction from wastewater treatment plant and dewatering improvement by hydrothermal method[J]. Environmental Engineering,2017,35(4):91-96.
|
42 |
徐振佳,陆宇倩,李莲,等. 不同反应条件对污泥水热碳化脱水性能的影响[J]. 环境工程,2019,37(3):1-6,12.
|
|
XU Zhenjia, LU Yuqian, LI Lian,et al. Effect of reaction condition on hydrothermal carbonization dewatering performance of sludge[J]. Environmental Engineering,2019,37(3):1-6,12.
|
43 |
|
|
ZHUANG Xiuzheng, YIN Xiuli, HUANG Yanqin,et al. Research on hydrothermal treatment of sewage sludge and its industrial applications[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4224-4231. doi: 10.1016/j.biortech.2017.08.195
|
44 |
WANG Liping, LI Aimin, CHANG Yuzhi. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:Heavy metals,volatile organic compounds and combustion characteristics of hydrochar[J]. Chemical Engineering Journal, 2016, 297:1-10. doi: 10.1016/j.cej.2016.03.131
|
45 |
HU Kai, JIANG Junqiu, ZHAO Qingliang,et al. Conditioning of wastewater sludge using freezing and thawing:Role of curing[J]. Water Research, 2011, 45(18):5969-5976. doi: 10.1016/j.watres.2011.08.064
|
46 |
TUNÇAL T. Improving thermal dewatering characteristics of mechanically dewatered sludge:Response surface analysis of combined lime-heat treatment[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2011, 83(5):405-410. doi: 10.2175/106143017x15131012152735
|
47 |
Franceschini O. Dewatering of sludge by freezing[D]. Luleå:Luleå University of Technology,2010.
|
48 |
武亚军,何心妍,张旭东,等. 冻融预处理填埋污泥的室内真空脱水试验[J]. 哈尔滨工业大学学报, 2021, 53(11):154-161. doi: 10.11918/202003051
|
|
WU Yajun, HE Xinyan, ZHANG Xudong,et al. Experimental study on vacuum dehydration of sludge in landfill by freeze-thaw pretreatment[J]. Journal of Harbin Institute of Technology, 2021, 53(11):154-161. doi: 10.11918/202003051
|
49 |
|
|
FANG Xing, LI Zhihua, YANG Chengjian. Effect of combined cooling and heating methods on low-temperature drying of municipal dewatered sludge[J]. China Environmental Science, 2020, 40(6):2546-2553. doi: 10.3969/j.issn.1000-6923.2020.06.025
|
50 |
GOGATE P R, KABADI A M. A review of applications of cavitation in biochemical engineering/biotechnology[J]. Biochemical Engineering Journal, 2009, 44(1):60-72. doi: 10.1016/j.bej.2008.10.006
|
51 |
|
|
HUANG Jinjia, LIANG Jialin, YANG Xian,et al. Deep dewatering of sewage sludge by ultrasonic-bioleaching-lime conditioning combined with ultrahigh pressure filtration system and its toxicity evaluation[J]. Acta Scientiae Circumstantiae, 2020, 40(5):1745-1759. doi: 10.1016/j.ecoenv.2020.110349
|
52 |
FENG Xin, DENG Jinchuan, LEI Hengyi,et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 100(3):1074-1081. doi: 10.1016/j.biortech.2008.07.055
|
53 |
薛飞,陈钦,郭庆峰,等. 超声-溶菌酶协同处理强化纺织印染污泥脱水性能研究[J]. 环境污染与防治,2020,42(5):528-533.
|
|
XUE Fei, CHEN Qin, GUO Qingfeng,et al. Research on the enhanced dewatering performance of textile dyeing sludge by ultrasonic-lysozyme synergistic treatment[J]. Environmental Pollution & Control,2020,42(5):528-533.
|
54 |
BIEN J, WOLNY L. Changes of some sewage sludge parameters prepared with an ultrasonic field[J]. Water Science and Technology, 1997, 36(11):101-106. doi: 10.2166/wst.1997.0399
|
55 |
WANG F, JI M, LU S. Influence of ultrasonic disintegration on the dewaterability of waste activated sludge[J]. Environmental Progress, 2006, 25(3):257-260. doi: 10.1002/ep.10149
|
56 |
YU Qiang, LEI Hengyi, YU Guangwei,et al. Influence of microwave irradiation on sludge dewaterability[J]. Chemical Engineering Journal, 2009, 155(1/2):88-93. doi: 10.1016/j.cej.2009.07.010
|
57 |
|
|
WU Jian, TANG Weixue, PAN Zhanchang,et al. Study on microwave-ultrasonic dewatering performance of aluminum processing sludge[J]. Industrial Water Treatment, 2020, 40(5):49-51. doi: 10.11894/iwt.2019-0464
|
58 |
李洋洋,马姝雅,朱薇,等. 微波耦合Fe~0/H2O2对剩余污泥脱水性能的影响[J]. 太原理工大学学报,2021,52(1):53-60.
|
|
LI Yangyang, MA Shuya, ZHU Wei,et al. Effect of microwave-coupled Fe0/H2O2 on excess sludge dewaterability[J]. Journal of Taiyuan University of Technology,2021,52(1):53-60.
|
59 |
熊杰,张鹤清,王玉珏. 污泥电脱水过程重金属迁移规律研究[J]. 环境科学与技术,2017,40(4):30-35.
|
|
XIONG Jie, ZHANG Heqing, WANG Yujue. Heavy metal migration during sludge electro-dewatering process[J]. Environmental Science & Technology,2017,40(4):30-35.
|
60 |
袁晋亭,曾锐,莎莉,等. 高盐高有机制药废水污泥电渗透高干脱水[J]. 化工进展,2020,39(8):3380-3385.
|
|
YUAN Jinting, ZENG Rui, SHA Li,et al. Electroosmotic dewatering of high salinity organic pharmaceutical wastewater sludge[J]. Chemical Industry and Engineering Progress,2020,39(8):3380-3385.
|
61 |
|
|
HUANG Diannan, JIAO Meiyi, LI Lin,et al. Effect of electroosmotic dehydration on sludge properties and bound water content[J]. Chinese Journal of Environmental Engineering, 2019, 13(2):424-430. doi: 10.12030/j.cjee.201807214
|
62 |
HU Shaogang, HU Jingping, SUN Yingfei,et al. Simultaneous heavy metal removal and sludge deep dewatering with Fe(II) assisted electrooxidation technology[J]. Journal of Hazardous Materials, 2021, 405:124072. doi: 10.1016/j.jhazmat.2020.124072
|
63 |
RAO Binqi, PANG Hongru, FAN Feibiao,et al. Pore-scale model and dewatering performance of municipal sludge by ultrahigh pressurized electro-dewatering with constant voltage gradient[J]. Water Research, 2021, 189:116611. doi: 10.1016/j.watres.2020.116611
|