1 |
GAO Lei, ZHOU Weili, HUANG J,et al. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent[J]. Bioresource Technology,2017,234:243-252. doi:10.1016/j.biortech.2017.03.036
|
2 |
刘宗杨,程庆锋,刘盛余. 城镇二级出水深度脱氮研究进展[J]. 水处理技术,2021,47(12):8-12.
|
|
LIU Zongyang, CHENG Qingfeng, LIU Shengyu. Research progress in tertiary nitrogen removal from secondary effluent of wastewater treatment plants[J]. Technology of Water Treatment,2021,47(12):8-12.
|
3 |
DU Rui, PENG Yongzhen, CAO Shenbin,et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology,2016,100(4):2011-2021. doi:10.1007/s00253-015-7052-9
|
4 |
马男. 以玉米芯为缓释碳源的反硝化滤池深度脱氮效能研究[D]. 哈尔滨:哈尔滨工业大学,2017.
|
|
MA Nan. Advanced nitrogen removal of denitrification filter with corncob as slow-release carbon source[D]. Harbin:Harbin Institute of Technology,2017.
|
5 |
邵兵,张立秋,李淑更,等. 2种缓释碳源材料的释碳特性及脱氮性能研究[J]. 水处理技术,2020,46(12):34-38. doi:10.16796/j.cnki.1000-3770.2020.12.007
|
|
SHAO Bing, ZHANG Liqiu, LI Shugeng,et al. Study on carbon release properties and denitrification performances of two slow-release carbon sources materials[J]. Technology of Water Treatment,2020,46(12):34-38. doi:10.16796/j.cnki.1000-3770.2020.12.007
|
6 |
彭锦玉,张克峰,王全勇,等. 以4种天然植物材料为碳源的固相反硝化研究[J]. 工业水处理,2021,41(10):104-108. doi:10.19965/j.cnki.iwt.2021-0087
|
|
PENG Jinyu, ZHANG Kefeng, WANG Quanyong,et al. Solid phase denitrification using four natural plant materials as carbon sources[J]. Industrial Water Treatment,2021,41(10):104-108. doi:10.19965/j.cnki.iwt.2021-0087
|
7 |
张立秋,王登敏,李淑更,等. 固体碳源生物膜SND处理实际低碳源城市污水[J]. 工业水处理,2019,39(8):19-22. doi:10.11894/iwt.2018-0665
|
|
ZHANG Liqiu, WANG Dengmin, LI Shugeng,et al. Treatment of actual low carbon source urban sewage with solid carbon source biofilm SND[J]. Industrial Water Treatment,2019,39(8):19-22. doi:10.11894/iwt.2018-0665
|
8 |
易成豪,秦伟,陈湛,等. 聚己内酯与聚羟基丁酸戊酸酯的脱氮性能对比[J]. 环境科学,2019,40(9):4143-4151.
|
|
YI Chenghao, QIN Wei, CHEN Zhan,et al. Comparison of polycaprolactone and poly-3-hydroxybutyrate-co-3-hydroxyvalerate for nitrogen removal[J]. Environmental Science,2019,40(9):4143-4151.
|
9 |
XIONG Rui, YU Xinxiao, YU Luji,et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere,2019,235:434-439. doi:10.1016/j.chemosphere.2019.06.198
|
10 |
钟丽燕,郝瑞霞,万京京,等. 新型缓释碳源耦合海绵铁同步脱氮除磷的研究[J]. 中国给水排水,2017,33(9):69-72.
|
|
ZHONG Liyan, HAO Ruixia, WAN Jingjing,et al. New slow-release organic carbon source coupling sponge iron for denitrification and phosphorus removal[J]. China Water & Wastewater,2017,33(9):69-72.
|
11 |
张克峰,王琪琨,丁万德,等. 香茅/聚砜缓释碳源SBR反应器脱氮效能研究[J]. 工业水处理,2022,42(12):128-135.
|
|
ZHANG Kefeng, WANG Qikun, DING Wande,et al. Study of nitrogen removal efficiency of lemongrass/PS slow release carbon source SBR reactor[J]. Industrial Water Treatment,2022,42(12):128-135.
|
12 |
WEBER K A, HEDRICK D B, PEACOCK A D,et al. Physiological and taxonomic description of the novel autotrophic,metal oxidizing bacterium,Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology and Biotechnology,2009,83(3):555-565. doi:10.1007/s00253-009-1934-7
|
13 |
王茹,刘梦瑜,刘冰茵,等. 共基质模式下铁盐脱氮反应器的运行性能及微生物学特征[J]. 环境科学,2019,40(12):5446-5455.
|
|
WANG Ru, LIU Mengyu, LIU Bingyin,et al. Operational performance and microbiological characteristics of an iron-salt denitrification reactor in co-substrate mode[J]. Environmental Science,2019,40(12):5446-5455.
|
14 |
JAMIESON J, PROMMER H, KAKSONEN A H,et al. Identifying and quantifying the intermediate processes during nitrate-dependent iron(Ⅱ) oxidation[J]. Environmental Science & Technology,2018,52(10):5771-5781. doi:10.1021/acs.est.8b01122
|
15 |
SCHERSON Y D, WELLS G F, WOO S G,et al. Nitrogen removal with energy recovery through N2O decomposition[J]. Energy Environ Sci.,2013,6(1):241-248. doi:10.1039/c2ee22487a
|
16 |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002.
|
|
SEPA. Water and wastewater monitoring analysis method[M]. 4th ed. Beijing:China Environmental Science Press,2002.
|
17 |
MORAGHAN J T, BURESH R J. Chemical reduction of nitrite and nitrous oxide by ferrous iron[J]. Soil Science Society of America Journal,1977,41(1):47-50. doi:10.2136/sssaj1977.03615995004100010017x
|
18 |
MELTON E D, SWANNER E D, BEHRENS S,et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology,2014,12(12):797-808. doi:10.1038/nrmicro3347
|
19 |
TIAN Tian, ZHOU Ke, XUAN Liang,et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research,2020,170:115300. doi:10.1016/j.watres.2019.115300
|
20 |
XIU Wei, GUO Huaming, SHEN Jiaxing,et al. Stimulation of Fe(Ⅱ) oxidation,biogenic lepidocrocite formation,and arsenic immobilization by Pseudogulbenkiania sp. strain 2002[J]. Environmental Science & Technology,2016,50(12):6449-6458. doi:10.1021/acs.est.6b00562
|
21 |
WEBER K A, PICARDAL F W, RODEN E E. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(Ⅱ) compounds[J]. Environmental Science & Technology,2001,35(8):1644-1650. doi:10.1021/es0016598
|
22 |
操家顺,谢玉洁,方芳,等. Fe3+对反硝化系统除磷效果及微生物产物的影响[J]. 环境科学研究,2015,28(1):125-133. doi:10.13198/j.issn.1001-6929.2015.01.17
|
|
CAO Jiashun, XIE Yujie, FANG Fang,et al. Influences of Fe3+ on phosphorus removal and microbial products in denitrifying phosphorus removal system[J]. Research of Environmental Sciences,2015,28(1):125-133. doi:10.13198/j.issn.1001-6929.2015.01.17
|
23 |
李永. 反硝化除磷工艺中亚铁协同除磷技术研究[D]. 哈尔滨:哈尔滨工业大学,2015.
|
|
LI Yong. Ferrous cooperative dephosphorization in denitrifying phosphorous removal process[D]. Harbin:Harbin Institute of Technology,2015.
|