| 1 | Christiansen C .  X-ray contrast media: an overview[J]. Toxicology, 2005, 209 (2): 185- 187. doi: 10.1016/j.tox.2004.12.020
 | 
																													
																						| 2 | Pérez S ,  Eichhorn P ,  Celiz M D , et al.  Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry[J]. Analytical Chemistry, 2006, 78 (6): 1866- 1874. doi: 10.1021/ac0518809
 | 
																													
																						| 3 | Hirsch R ,  Ternes T A ,  Lindart A , et al.  A sensitive method for the determination of iodine containing diagnostic agents in aqueous matrices using LC-electrospray-tandem-MS detection[J]. Analytical Chemistry, 2000, 366, 835- 841. doi: 10.1007/s002160051581
 | 
																													
																						| 4 | Kormos J L ,  Schulz M ,  Ternes T A .  Occurrence of lodinated X-ray contrast media and their biotransformation products in the urban water cycle[J]. Environmental Science & Technology, 2011, 45 (20): 8723- 8732. | 
																													
																						| 5 | Ternes T A ,  Hirsch R .  Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment[J]. Environmental Science & Technology, 2000, 34 (13): 2741- 2748. URL
 | 
																													
																						| 6 | Steger-Hartmann T ,  Lange R ,  Schweinfurth H .  Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide(ultravist)[J]. Ecotoxicology & Environmental Safety, 1999, 42 (3): 274- 281. URL
 | 
																													
																						| 7 | Pomati F ,  Castiglioni S ,  Zuccato E , et al.  Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells[J]. Environmental Science & Technology, 2006, 40 (7): 2442- 2447. | 
																													
																						| 8 | Plewa M J ,  Wagner E D ,  Richardson S D , et al.  Chemical and biological characterization of newly discovered iodoacid drinking water disinfection by products[J]. Environmental Science & Technology, 2004, 38 (18): 4713- 4722. URL
 | 
																													
																						| 9 | Seitz W ,  Weber W H ,  Jiang J Q , et al.  Monitoring of iodinated X-ray contrast media in surface water[J]. Chemosphere, 2006, 64 (8): 1318- 1324. doi: 10.1016/j.chemosphere.2005.12.030
 | 
																													
																						| 10 | Ens W ,  Senner F ,  Gygax B , et al.  Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water[J]. Analytical & Bioanalytical Chemistry, 2014, 406 (12): 2789- 2798. URL
 | 
																													
																						| 11 | Putschew A ,  Schittko S ,  Jekel M .  Quantification of triiodinated benzene derivatives and X-ray contrast media in water samples by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 930 (1): 127- 134. URL
 | 
																													
																						| 12 | Zonja B ,  Delgado A ,  Perez S , et al.  LC-HRMS suspect screening for detection-based prioritization of iodinated contrast media photodegradates in surface waters[J]. Environmental Science & Technology, 2015, 49 (6): 3464- 3472. URL
 | 
																													
																						| 13 | Zemann M ,  Wolf L ,  Poschko A , et al.  Sources and processes affecting the spatio-temporal distribution of pharmaceuticals and X-ray contrast media in the water resources of the Lower Jordan Valley[J]. Science of the Total Environment, 2014, 488-489, 100- 114. doi: 10.1016/j.scitotenv.2014.04.063
 | 
																													
																						| 14 | Xu Zhifa ,  Li Xia ,  Hu Xialin , et al.  Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment[J]. Chemosphere, 2017, 184, 253- 260. doi: 10.1016/j.chemosphere.2017.05.048
 | 
																													
																						| 15 | Duirk S E ,  Lindell C ,  Cornelison C C , et al.  Formation of toxic iodinated disinfection by-products from compounds used in medical imaging[J]. Environmental Science & Technology, 2011, 45 (16): 6845- 6854. URL
 | 
																													
																						| 16 | Kormos J L ,  Schulz M ,  Kohler H P E , et al.  Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways[J]. Environmental Science & Technology, 2010, 44 (13): 4998- 5007. URL
 | 
																													
																						| 17 | Kormos J L ,  Schulz M ,  Wagner M , et al.  Multistep approach for the structural identification of biotransformation products of iodinated X-ray contrast media by liquid chromatography/hybrid triple quadrupole linear ion trap mass spectrometry and 1H and 13C nuclear magnetic resonance[J]. Analytical Chemistry, 2009, 81 (22): 9216- 9224. doi: 10.1021/ac9011717
 | 
																													
																						| 18 | Echeverria S ,  Borrull F ,  Fontanals N , et al.  Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry[J]. Talanta, 2013, 116, 931- 936. doi: 10.1016/j.talanta.2013.07.080
 | 
																													
																						| 19 | 滕南雁, 王维, 王瑾.  高效液相色谱法测定碘海醇注射液的含量[J]. 药物分析杂质, 1996, 16 (6): 399- 400. URL
 | 
																													
																						| 20 | 陆豪杰, 康经武, 杨永坛, 等.  毛细管电泳分离测定碘海醇及其杂质[J]. 色谱, 2000, 18 (1): 73- 76. doi: 10.3321/j.issn:1000-8713.2000.01.022
 | 
																													
																						| 21 | 钟玉莲.  紫外分光光度法测定欧乃派克注射液的含量[J]. 西北药学杂志, 1994, 9 (4): 149- 150. URL
 | 
																													
																						| 22 | Li Xia ,  Hu Junjian ,  Yin Daqiang , et al.  Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples[J]. Journal of Separation Science, 2015, 38 (11): 1998- 2005. doi: 10.1002/jssc.201401296
 | 
																													
																						| 23 | Echeverria S ,  Borrull F ,  Pocurull E , et al.  Pressurized liquid extraction and liquid chromatography-tandem mass spectrometry applied to determine iodinated X-ray contrast media in sewage sludge[J]. Analytica Chimica Acta, 2014, 844, 75- 79. doi: 10.1016/j.aca.2014.05.055
 | 
																													
																						| 24 | Kitahashi T ,  Furuta I .  Method development for determining the iohexol in human serum by micellar electrokinetic capillary chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34 (1): 153- 158. doi: 10.1016/j.japna.2003.08.019
 | 
																													
																						| 25 | Lopez-Prieto I ,  Wu Shimin ,  Ji Weikang , et al.  A direct injection liquid chromatography tandem mass spectrometry method for the kinetic study on iodinated contrast media(ICMs) removal in natural water[J]. Chemosphere, 2020, 243, 125311. doi: 10.1016/j.chemosphere.2019.125311
 | 
																													
																						| 26 | Ribbers K ,  Breuer L ,  Düring R A .  Detection of artificial sweeteners and iodinated X-ray contrast media in wastewater via LC-MS/MS and their potential use as anthropogenic tracers in flowing waters[J]. Chemosphere, 2019, 218, 189- 196. doi: 10.1016/j.chemosphere.2018.10.193
 | 
																													
																						| 27 | Wang Zhen ,  Lin Yili ,  Xu Bin , et al.  Degradation of iohexol by UV/chlorine process and formation of iodinated trihalomethanes during post-chlorination[J]. Chemical Engineering Journal, 2016, 283, 1090- 1096. doi: 10.1016/j.cej.2015.08.043
 | 
																													
																						| 28 | Allard S ,  Nottle C E ,  Chan A , et al.  Ozonation of iodide containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs[J]. Water Research, 2013, 47 (6): 1953- 1960. doi: 10.1016/j.watres.2012.12.002
 | 
																													
																						| 29 | Sugihara M N ,  Moeller D ,  Paul T , et al.  TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate[J]. Applied Catalysis B Environmental, 2013, 129, 114- 122. doi: 10.1016/j.apcatb.2012.09.013
 | 
																													
																						| 30 | Papoutsakis S ,  Afshari Z ,  Malato S , et al.  Elimination of the iodinated contrast agent iohexol in water, wastewater and urine matrices by application of photo-Fenton and ultrasound advanced oxidation processes[J]. Journal of Environmental Chemical Engineering, 2015, 3 (3): 2002- 2009. doi: 10.1016/j.jece.2015.07.002
 | 
																													
																						| 31 | Matsushita T ,  Kobayashi N ,  Hashizuka M , et al.  Changes in mutagenicity and acute toxicity of solutions of iodinated X-ray contrast media during chlorination[J]. Chemosphere, 2015, 135, 101- 107. doi: 10.1016/j.chemosphere.2015.03.082
 | 
																													
																						| 32 | Tian Fuxiang ,  Xu Bin ,  Lin Yili , et al.  Chlor(am) ination of iopamidol: kinetics, pathways and disinfection by-products formation[J]. Chemosphere, 2017, 184, 489- 497. doi: 10.1016/j.chemosphere.2017.06.012
 | 
																													
																						| 33 | Schulz M ,  Loeffler D ,  Wagner M , et al.  Transformation of the X-ray contrast medium lopromide in soil and biological waste water treatment[J]. Environmental Science & Technology, 2008, 42 (19): 7207- 7217. URL
 | 
																													
																						| 34 | Redeker M ,  Wick A ,  Meermann B , et al.  Removal of the iodinated X-ray contrast medium diatrizoate by anaerobic transformation[J]. Environmental Science & Technology, 2014, 48 (17): 10145- 10154. URL
 | 
																													
																						| 35 | Westerhoff P ,  Yoon Y ,  Snyder S , et al.  Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science & Technology, 2005, 39 (17): 6649- 6663. | 
																													
																						| 36 | Sang D K ,  Cho J ,  Kim I S , et al.  Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking and waste waters[J]. Water Research, 2007, 41 (5): 1013- 1021. doi: 10.1016/j.watres.2006.06.034
 | 
																													
																						| 37 | Seitz W ,  Jiang Jiaqian ,  Schulz W , et al.  Formation of oxidation byproducts of the iodinated X-ray contrast medium iomeprol during ozonation[J]. Chemosphere, 2008, 70 (7): 1238- 1246. doi: 10.1016/j.chemosphere.2007.07.081
 | 
																													
																						| 38 | Giannakis S ,  Jovic M ,  Gasilova N , et al.  Iohexol degradation in wastewater and urine by UV-based advanced oxidation processes(AOPs): process modeling and by-products identification[J]. Journal of Environmental Management, 2017, 195 (2): 174- 185. URL
 | 
																													
																						| 39 | Del Moro G ,  Pastore C ,  Di Iaconi C , et al.  Iodinated contrast media electro-degradation: Process performance and degradation pathways[J]. Science of the Total Environment, 2015, 06/507, 631- 643. URL
 | 
																													
																						| 40 | de Salles Pupo M M ,  Oliva J M A ,  Eguiluz K I B , et al.  Characterization and comparison of Ti/TiO2-NT/SnO2-SbBi, Ti/SnO2-SbBi and BDD anode for the removal of persistent iodinated contrast media (ICM)[J]. Chemosphere, 2020, 253, 126701. doi: 10.1016/j.chemosphere.2020.126701
 | 
																													
																						| 41 | Radjenovic J ,  Flexer V ,  Donose B C , et al.  Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation[J]. Environmental Science & Technology, 2013, 47 (23): 13686- 13694. URL
 | 
																													
																						| 42 | Redeker M ,  Wick A ,  Meermann B , et al.  Anaerobic Transformation of the iodinated X-ray contrast medium iopromide, its aerobic transformation products, and transfer to further iodinated X-ray contrast media[J]. Environmental Science & Technology, 2018, 52 (15): 8309- 8320. URL
 | 
																													
																						| 43 | Hapeshi E ,  Lambrianides A ,  Koutsoftas P , et al.  Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban waste water[J]. Environmental Science and Pollution Research, 2013, 20 (6): 3592- 3606. doi: 10.1007/s11356-013-1605-1
 | 
																													
																						| 44 | Dong Huiyu ,  Qiang Zhimin ,  Liu Shaogang , et al.  Oxidation of iopamidol with ferrate(Fe(Ⅵ)): kinetics and formation of toxic iodinated disinfection by-products[J]. Water Research, 2018, 130, 200- 207. doi: 10.1016/j.watres.2017.12.003
 |