1 |
张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, (9): 16- 21.
URL
|
2 |
尹广军, 陈福明. 电容去离子研究进展[J]. 水处理技术, 2003, (2): 63- 66.
doi: 10.3969/j.issn.1000-3770.2003.02.001
|
3 |
Blair J W , Murphy G W . Electrochemical demineralization of water with porous electrodes of large surface area[M]. Washington: American Chemical Society, 1960: 206- 223.
|
4 |
Arnold B B , Murphy G W . Studies on the electrochemistry of carbon and chemically modified carbon surfaces[J]. The Journal of Physical Chemistry, 1961, 65 (1): 135- 138.
doi: 10.1021/j100819a038
|
5 |
Murphy G W , Caudle D D . Mathematical theory of electrochemical demineralization in flowing systems[J]. Electrochimica Acta, 1967, 12 (12): 1655- 1664.
doi: 10.1016/0013-4686(67)80079-3
|
6 |
Reid G W , Townsend F M , Stevens A M . Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water[M]. Washington: U. S. Department of the Interior, 1968: 10- 27.
|
7 |
Johnson A M , Newman J . Desalting by means of porous carbon electrodes[J]. Journal of the Electrochemical Society, 1971, 118 (3): 510- 517.
doi: 10.1149/1.2408094
|
8 |
Farmer J C , Fix D V , Mack G V , et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143 (1): 159- 169.
doi: 10.1149/1.1836402
|
9 |
Farmer J C , Bahowick S M , Harrar J E . Elecrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water[J]. Energy & Fuels, 1997, 11 (2): 337- 347.
|
10 |
Dai Kai , Shi Liyi , Fang Jianhui . NaCl adsorption in multi-walled carbon nanotubes[J]. Materials Letters, 2005, 59 (16): 1989- 1992.
doi: 10.1016/j.matlet.2005.01.042
|
11 |
Zhang Dengsong , Shi Liyi , Fang Jianhui , et al. Preparation and desalination performance of multiwall carbon nanotubes[J]. Materials Chemistry & Physics, 2006, 97 (2/3): 415- 419.
URL
|
12 |
Zhai Yunpu , Dou Yuqian , Zhao Dongyuan , et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23 (42): 4828- 4850.
doi: 10.1002/adma.201100984
|
13 |
Poradaab S , Zhao R , van der Wal A , et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58 (8): 1388- 1442.
doi: 10.1016/j.pmatsci.2013.03.005
|
14 |
Huang Zhenghong , Yang Zhiyu , Kang Feiyu , et al. Carbon electrodes for capacitive deionization[J]. Journal of Materials Chemistry A, 2017, 5 (2): 470- 496.
doi: 10.1039/C6TA06733F
|
15 |
Zhao R , Biesheuvel P M , Miedema H , et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1 (1): 205- 210.
doi: 10.1021/jz900154h
|
16 |
Li Haibo , Lu Ting , Pan Likun , et al. Electrosorption behavior of graphene in NaCl solutions[J]. Journal of Materials Chemistry, 2009, 19 (37): 6773.
doi: 10.1039/b907703k
|
17 |
Huang Wei , Zhang Yimin , Bao Shenxu , et al. Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes[J]. Desalination, 2014, 340, 67- 72.
doi: 10.1016/j.desal.2014.02.012
|
18 |
Niu Rui , Li Haibo , Ma Yulong , et al. Insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid[J]. Electrochimica Acta, 2015, 176, 755- 762.
doi: 10.1016/j.electacta.2015.07.012
|
19 |
Yeh C L , Hsi H C , Li K C , et al. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio[J]. Desalination, 2015, 367, 60- 68.
doi: 10.1016/j.desal.2015.03.035
|
20 |
Li Yang , Qi Junwen , Li Jiansheng , et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5, 6635- 6644.
URL
|
21 |
张德懿, 雷龙艳, 尚永花. 氮掺杂对碳材料性能的影响研究进展[J]. 化工进展, 2016, 35 (3): 831- 836.
URL
|
22 |
Paraknowitsch J P , Thomas A , Antonietti M . A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials[J]. Journal of Materials Chemistry, 2010, 20 (32): 6746- 6758.
doi: 10.1039/c0jm00869a
|
23 |
Liu Yong , Chen Taiqiang , Lu Ting , et al. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization[J]. Electrochimica Acta, 2015, 158 (10): 403- 409.
URL
|
24 |
Lu Mingming , Cao Wenqiang , Shi Honglong , et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature[J]. Journal of Materials Chemistry, 2014, 2, 10540- 10547.
doi: 10.1039/c4ta01715c
|
25 |
李丹, 刘玉荣, 林保平, 等. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, (4): 94- 105.
URL
|
26 |
Myint M T Z , Al-Harthi S H , Dutta J . Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes[J]. Desalination, 2014, 344, 236- 242.
doi: 10.1016/j.desal.2014.03.037
|
27 |
Dreyer D R , Park S , Bielawski C W , et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39 (1): 228- 240.
URL
|
28 |
Li Haibo , Leong Zhiyi , Shi Wenhui , et al. Hydrothermally synthesized graphene and Fe3O4 nanocomposites for high performance capacitive deionization[J]. RSC Advances, 2016, 6, 11967- 11972.
doi: 10.1039/C5RA23151E
|
29 |
Kim C , Lee J , Kim S , et al. TiO2 sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization[J]. Desalination, 2014, 342, 70- 74.
doi: 10.1016/j.desal.2013.07.016
|
30 |
Lee J B , Park K K , Eum H M , et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196 (1/2/3): 125- 134.
URL
|
31 |
Kim Y J , Choi J H . Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44 (3): 990- 996.
doi: 10.1016/j.watres.2009.10.017
|
32 |
Biesheuvel P M , Zhao R , Porada S , et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360 (1): 239- 248.
doi: 10.1016/j.jcis.2011.04.049
|
33 |
Zhao Yajing , Wang Yue , Wang Ruguo , et al. Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes[J]. Desalination, 2013, 324, 127- 133.
doi: 10.1016/j.desal.2013.06.009
|
34 |
Li Haibo , Zou Linda . Ion-exchange membrane capacitive deioni zation: a new strategy for brackish water desalination[J]. Desalination, 2011, 275 (1/2/3): 62- 66.
|
35 |
刘丹阳, 唐浩, 黄宽, 等. 膜电容去离子和微生物电容脱盐电池研究进展[J]. 水处理技术, 2015, 287 (12): 26- 30.
URL
|
36 |
Jeon S I , Park H R , Yeo J G , et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6 (5): 1471- 1475.
URL
|
37 |
Xu Xingtao , Wang Miao , Liu Yong , et al. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V[J]. Acs Sustainable Chemistry & Engineering, 2017, 5 (1): 189- 195.
URL
|
38 |
Hatzell K B , Iwama E , Ferris A , et al. Capacitive deionization concept based on suspension electrodes without ion exchange membranes[J]. Electrochemistry Communications, 2014, 43, 18- 21.
doi: 10.1016/j.elecom.2014.03.003
|
39 |
Lee J , Kim S , Kim C , et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science, 2014, 7 (11): 3683- 3689.
URL
|
40 |
Kim T , Gorski C A , Logan B E . Low energy desalination using battery electrode deionization[J]. Environmental Science & Technology Letters, 2017, 4 (10): 444- 449.
URL
|
41 |
Guo Lu , Mo Runwei , Shi Wenhui , et al. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism[J]. Nanoscale, 2017, 9 (35): 13305- 13312.
doi: 10.1039/C7NR03579A
|
42 |
Yu Fei , Wang Lei , Wang Ying , et al. Faradaic reactions in capacitive deionization for desalination and ion separation[J]. Journal of Materials Chemistry A, 2019, 7, 15999- 16027.
doi: 10.1039/C9TA01264H
|