1 |
郝如杰,郑纪永,朱成林,等. 地下酸性矿井水治理工程设计及应用[J]. 煤炭工程,2023,55(4):98-101.
|
|
HAO Rujie, ZHENG Jiyong, ZHU Chenglin,et al. Design and operation of treatment project underground acid mine water[J]. Coal Engineering,2023,55(4):98-101.
|
2 |
李福勤,豆硕超,高珊珊,等. 多重混凝沉淀处理高悬浮物矿井水试验及应用[J]. 煤炭工程,2023,55(4):102-106.
|
|
LI Fuqin, DOU Shuochao, GAO Shanshan,et al. Experiment and application of multiple coagulation and sedimentation treatment of mine water with high suspended solids[J]. Coal Engineering,2023,55(4):102-106.
|
3 |
郭强,宋喜东,虎晓龙,等. 高矿化度矿井水井下深度处理与浓盐水封存技术研究[J]. 煤炭工程,2020,52(12):16-19.
|
|
GUO Qiang, SONG Xidong, HU Xiaolong,et al. Treatment of high salinity mine water and storage of concentrated brine[J]. Coal Engineering,2020,52(12):16-19.
|
4 |
龙涛,王珍,杨玮,等. 高矿化度矿井水脱盐技术应用现状及研究进展[J]. 水处理技术,2023,49(5):11-16.
|
|
LONG Tao, WANG Zhen, YANG Wei,et al. Research progress of high salinity mine water desalination technology[J]. Technology of Water Treatment,2023,49(5):11-16.
|
5 |
薛忠新,李文俊,韩伟. 张家峁煤矿矿井水处理回用工艺研究[J]. 煤炭工程,2018,50(12):21-23.
|
|
XUE Zhongxin, LI Wenjun, HAN Wei. Craft of mine waste water treatment and recycling in Zhangjiamao Coal Mine[J]. Coal Engineering,2018,50(12):21-23.
|
6 |
蒋斌斌,虎晓龙,郭强,等. 灵新煤矿高矿化度矿井水井下分级处理技术研究[J]. 煤炭工程,2018,50(8):83-85.
|
|
JIANG Binbin, HU Xiaolong, GUO Qiang,et al. Research on underground classification treatment technology of highly mineralized mine water in Lingxin Coal Mine[J]. Coal Engineering,2018,50(8):83-85.
|
7 |
顾大钊,李庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11-18.
|
|
GU Dazhao, LI Ting, LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11-18.
|
8 |
徐志清,赵焰,陆梦楠. 燃煤电厂脱硫废水零排放工程案例解析[J]. 电力科技与环保,2020,36(2):6-12.
|
|
XU Zhiqing, ZHAO Yan, LU Mengnan. Engineering case analysis of zero liquid discharge system of desulfurization wastewater in a Power Plant[J]. Electric Power Technology and Environmental Protection,2020,36(2):6-12.
|
9 |
马丙军,刘全军,张野虎,等. 高低温耦合脱硫废水零排放技术研究及应用[J]. 电力科技与环保,2023,39(4):331-337.
|
|
MA Bingjun, LIU Quanjun, ZHANG Yehu,et al. Research and application of high-low temperature coupling desulfurization wastewater zero discharge technology[J]. Electric Power Technology and Environmental Protection,2023,39(4):331-337.
|
10 |
毛维东,周如禄,郭中权. 煤矿矿井水零排放处理技术与应用[J]. 煤炭科学技术,2017,45(11):205-210.
|
|
MAO Weidong, ZHOU Rulu, GUO Zhongquan. Zero liquid discharge treatment technology and application for coal mine drainage water[J]. Coal Science and Technology,2017,45(11):205-210.
|
11 |
王志轩. 碳达峰、碳中和目标实现路径与政策框架研究[J]. 电力科技与环保,2021,37(3):1-8.
|
|
WANG Zhixuan. Research on the pathway and policy framework of achieving carbon peak and carbon neutrality[J]. Electric Power Technology and Environmental Protection,2021,37(3):1-8.
|
12 |
朱法华,王玉山,徐振,等. 中国电力行业碳达峰、碳中和的发展路径研究[J]. 电力科技与环保,2021,37(3):9-16.
|
|
ZHU Fahua, WANG Yushan, XU Zhen,et al. Research on the development path of carbon peak and carbon neutrality in China’s Power Industry[J]. Electric Power Technology and Environmental Protection,2021,37(3):9-16.
|
13 |
|
|
SUN Xiaoqi, HAO Zewei, CHEN Jiabin,et al. Efficient separation and resource of salts in highly saline wastewater in the context of carbon neutrality[J]. Industrial Water Treatment, 2023, 43(2):14-22. doi: 10.19965/j.cnki.iwt.2022-0442
|
14 |
李福勤,赵桂峰,朱云浩,等. 高矿化度矿井水零排放工艺研究[J]. 煤炭科学技术,2018,46(9):81-86.
|
|
LI Fuqin, ZHAO Guifeng, ZHU Yunhao,et al. Research on zero discharge process of highly-mineralized mine water[J]. Coal Science and Technology,2018,46(9):81-86.
|
15 |
葛光荣,吴一平,张全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术,2021,49(3):208-214.
|
|
GE Guangrong, WU Yiping, ZHANG Quan. Research on technology and process for moderate desalination of high-salinity mine water by nanofiltration[J]. Coal Science and Technology,2021,49(3):208-214.
|
16 |
史元腾,王小强,荆波湧,等. 纳滤系统在矿井水零排放项目中分盐的应用[J]. 膜科学与技术,2019,39(3):119-124.
|
|
SHI Yuanteng, WANG Xiaoqiang, JING Boyong,et al. Application of salt separation in nanofiltration system in mine water zero emission project[J]. Membrane Science and Technology,2019,39(3):119-124.
|
17 |
王小强,赵泽盟,林金平. MVR技术在矿井水零排放及资源化中的应用[J]. 煤炭技术,2020,39(2):112-114.
|
|
WANG Xiaoqiang, ZHAO Zemeng, LIN Jinping. Application of mechanical vapor recompression on zero discharge and resource of mine water[J]. Coal Technology,2020,39(2):112-114.
|
18 |
JONES E, QADIR M, VAN VLIET M T H,et al. The state of desalination and brine production:A global outlook[J]. Science of the Total Environment, 2019, 657:1343-1356. doi: 10.1016/j.scitotenv.2018.12.076
|
19 |
VOUTCHKOV N. Energy use for membrane seawater desalination-current status and trends[J]. Desalination, 2018, 431:2-14. doi: 10.1016/j.desal.2017.10.033
|
20 |
KIM J, PARK K, YANG D R,et al. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants[J]. Applied Energy, 2019, 254:113652. doi: 10.1016/j.apenergy.2019.113652
|
21 |
田玲. MVR蒸发技术在废水处理中的应用研究[J]. 工业水处理,2023,43(4):144-148.
|
|
TIAN Ling. Study on the application of MVR evaporation technology in wastewater treatment[J]. Industrial Water Treatment,2023,43(4):144-148.
|
22 |
陈亮辉. 金湾电厂废水零排放技术研究与实践[J]. 节能与环保,2021(3):50-51.
|
|
CHEN Lianghui. Research and practice on zero discharge technology of wastewater in Jinwan power plant[J]. Energy Conservation & Environmental Protection,2021(3):50-51.
|
23 |
DAVENPORT D, DESHMUKH A, WERBER J R,et al. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination:Current status,design considerations,and research needs[J]. Environmental Science & Technology Letters, 2018, 5(8):467-475. doi: 10.1021/acs.estlett.8b00274
|
24 |
RAUTENBACH R, LINN T. High-pressure reverse osmosis and nanofiltration:A “zero discharge” process combination for the treatment of waste water with severe fouling/scaling potential[J]. Desalination, 1996, 105(1/2):63-70. doi: 10.1016/0011-9164(96)00059-8
|
25 |
RAUTENBACH R, LINN T, EILERS L. Treatment of severely contaminated waste water by a combination of RO,high-pressure RO and NF:Potential and limits of the process[J]. Journal of Membrane Science, 2000, 174(2):231-241. doi: 10.1016/s0376-7388(00)00388-4
|
26 |
DAVENPORT D M, WANG Li, SHALUSKY E,et al. Design principles and challenges of bench-scale high-pressure reverse osmosis up to 150 bar[J]. Desalination, 2021, 517:115237. doi: 10.1016/j.desal.2021.115237
|
27 |
BARTHOLOMEW T V,MEY L, ARENA J T,et al. Osmotically assisted reverse osmosis for high salinity brine treatment[J]. Desalination, 2017, 421:3-11. doi: 10.1016/j.desal.2017.04.012
|
28 |
BARTHOLOMEW T V, SIEFERT N S, MAUTER M S. Cost optimization of osmotically assisted reverse osmosis[J]. Environmental Science & Technology,2018,52(20):11813-11821.
|
29 |
BOUMA A T, LIENHARD J H. Split-feed counterflow reverse osmosis for brine concentration[J]. Desalination, 2018, 445:280-291. doi: 10.1016/j.desal.2018.07.011
|
30 |
CHEN Xi, YIP N Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis:Energy and operating pressure analysis[J]. Environmental Science & Technology, 2018, 52(4):2242-2250. doi: 10.1021/acs.est.7b05774
|
31 |
秦刚华,冯向东,李强,等. 反渗透系统节能减碳潜力研究[J]. 能源工程,2021,41(3):25-30.
|
|
QIN Ganghua, FENG Xiangdong, LI Qiang,et al. Research on energy saving and carbon reduction potential of reverse osmosis system[J]. Energy Engineering,2021,41(3):25-30.
|
32 |
SONG Daiwang, ZHANG Yin, WANG Haitao,et al. Demonstration of a piston type integrated high pressure pump-energy recovery device for reverse osmosis desalination system[J]. Desalination, 2021, 507:115033. doi: 10.1016/j.desal.2021.115033
|
33 |
CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:Principles,applications,and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2):70-87. doi: 10.1016/j.memsci.2006.05.048
|
34 |
ABOUNAHIA N, IBRAR I, KAZWINI T,et al. Desalination by the forward osmosis:Advancement and challenges[J]. Science of the Total Environment, 2023, 886:163901. doi: 10.1016/j.scitotenv.2023.163901
|
35 |
WEI Jing, QIU Changquan, TANG C Y,et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J]. Journal of Membrane Science, 2011, 372(1/2):292-302. doi: 10.1016/j.memsci.2011.02.013
|
36 |
YIP N Y, TIRAFERRI A, PHILLIP W A,et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology, 2010, 44(10):3812-3818. doi: 10.1021/es1002555
|
37 |
SHE Qianhong, JIN Xue, LI Qinghua,et al. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes[J]. Water Research, 2012, 46(7):2478-2486. doi: 10.1016/j.watres.2012.02.024
|
38 |
WU Simiao, ZOU Shiqiang, YANG Yuli,et al. Enhancing the performance of an osmotic microbial fuel cell through self-buffering with reverse-fluxed sodium bicarbonate[J]. Chemical Engineering Journal, 2018, 349:241-248. doi: 10.1016/j.cej.2018.05.086
|
39 |
HU Meng, MI Baoxia. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469:80-87. doi: 10.1016/j.memsci.2014.06.036
|
40 |
KIM J P, GO C Y, KANG J,et al. Nanoporous multilayer graphene oxide membrane for forward osmosis metal ion recovery from spent Li-ion batteries[J]. Journal of Membrane Science, 2023, 676:121590. doi: 10.1016/j.memsci.2023.121590
|
41 |
ELLIS S N, CUNNINGHAM M F, JESSOP P G. A forward osmosis hydrogel draw agent that responds to both heat and CO 2 [J]. Desalination, 2021, 510:115074. doi: 10.1016/j.desal.2021.115074
|
42 |
XU Yilin, WANG Yining, CHONG J Y,et al. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation[J]. Water Research, 2022, 221:118768. doi: 10.1016/j.watres.2022.118768
|
43 |
RANDALL D G, NATHOO J, LEWIS A E. A case study for treating a reverse osmosis brine using eutectic freeze crystallization:Approaching a zero waste process[J]. Desalination, 2011, 266(1/2/3):256-262. doi: 10.1016/j.desal.2010.08.034
|
44 |
ODU S O, VAN DER HAM A G J, METZ S,et al. Design of a process for supercritical water desalination with zero liquid discharge[J]. Industrial & Engineering Chemistry Research, 2015, 54(20):5527-5535. doi: 10.1021/acs.iecr.5b00826
|
45 |
VAN WYK S, VAN DER HAM A G J, KERSTEN S R A. Analysis of the energy consumption of supercritical water desalination(SCWD)[J]. Desalination, 2020, 474:114189. doi: 10.1016/j.desal.2019.114189
|
46 |
RAHIMI-AHAR Z, HATAMIPOUR M S, AHAR L R. Air humidification-dehumidification process for desalination:A review[J]. Progress in Energy and Combustion Science, 2020, 80:100850. doi: 10.1016/j.pecs.2020.100850
|
47 |
FILIPPINI G, AL-OBAIDI M A, MANENTI F,et al. Design and economic evaluation of solar-powered hybrid multi effect and reverse osmosis system for seawater desalination[J]. Desalination, 2019, 465:114-125. doi: 10.1016/j.desal.2019.04.016
|
48 |
SAYED E T, OLABI A G, ELSAID K,et al. Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region[J]. Journal of Advanced Research, 2023, 48:125-156. doi: 10.1016/j.jare.2022.08.016
|
49 |
ZHU Liangliang, GAO Minmin, PEH C K N,et al. Recent progress in solar-driven interfacial water evaporation:Advanced designs and applications[J]. Nano Energy, 2019, 57:507-518. doi: 10.1016/j.nanoen.2018.12.046
|
50 |
KABEEL A E, EL-AGOUZ S A. Review of researches and developments on solar stills[J]. Desalination, 2011, 276(1/2/3):1-12. doi: 10.1016/j.desal.2011.03.042
|
51 |
GHASEMI H, NI G, MARCONNET A M,et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5:4449. doi: 10.1038/ncomms5449
|
52 |
YANG Bo, ZHANG Zhiming, LIU Peitao,et al. Flatband λ-Ti 3O 5 towards extraordinary solar steam generation[J]. Nature, 2023, 622(7983):499-506. doi: 10.1038/s41586-023-06509-3
|
53 |
XU Ning, LI Jinlei, FINNERTY C,et al. Going beyond efficiency for solar evaporation[J]. Nature Water, 2023, 1:494-501. doi: 10.1038/s44221-023-00086-5
|
54 |
LI Weigu, LI Zheng, BERTELSMANN K,et al. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced Materials, 2019, 31(29):e1900720. doi: 10.1002/adma.201900720
|
55 |
WANG Xueyang, LIN Zhenhui, GAO Jintong,et al. Solar steam-driven membrane filtration for high flux water purification[J]. Nature Water, 2023, 1:391-398. doi: 10.1038/s44221-023-00059-8
|