1 |
张洪玲, 蔡金傍. 含硝基芳香族化合物废水处理技术研究进展[J]. 环境科学与技术, 2012, 34 (S2): 113- 117.
URL
|
2 |
Soojhawon I , Lokhande P D , Kodam K M , et al. Biotransformation of nitroaromatics and their effects on mixed function oxidase system[J]. Enzyme & Microbial Technology, 2005, 37 (5): 527- 533.
URL
|
3 |
程劲松, 强文学, 张丽华. 火炸药废水处理技术研究现状[J]. 化工技术与开发, 2012, (5): 40- 44.
doi: 10.3969/j.issn.1671-9905.2012.05.014
|
4 |
孙茜茜, 付萍, 李睿华, 等. 硝基苯废水处理技术研究进展[J]. 工业水处理, 2017, 37 (11): 1- 5.
doi: 10.11894/1005-829x.2017.37(11).001
|
5 |
于忠臣, 王达新, 李晨曦, 等. 难降解有机废水厌氧生物处理技术现状及发展[J]. 工业用水与废水, 2019, 50 (2): 1- 5.
doi: 10.3969/j.issn.1009-2455.2019.02.001
|
6 |
Hua Tao , Li Shengnan , Li Fengxiang , et al. Microbial electrolysis cell as an emerging versatile technology: A review on its potential application, advance and challenge[J]. Journal of Chemical Technology & Biotechnology, 2019, 94 (6): 1697- 1711.
URL
|
7 |
Logan B E , Rabaey K . Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337 (6095): 686- 690.
doi: 10.1126/science.1217412
|
8 |
Yuan Quan , Wang Haiyan , Hang Qianyu , et al. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent[J]. Environmental Science and Pollution Research, 2015, 22 (18): 13970- 13979.
doi: 10.1007/s11356-015-4546-z
|
9 |
Shi Liang , Dong Hailiang , Reguera G , et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14 (10): 651- 653.
doi: 10.1038/nrmicro.2016.93
|
10 |
Wang Aijie , Cheng Haoyi , Liang Bin , et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode[J]. Environmental Science & Technology, 2011, 45 (23): 10186- 10193.
URL
|
11 |
Liang Bin , Cheng Haoyi , Kong Deyong , et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental Science & Technology, 2013, 47 (10): 5353- 5361.
URL
|
12 |
Wang Xinyu , Xing Defeng , Ren Nanqi . p-Nitrophenol degradation and microbial community structure in a biocathode bioelectrochemical system[J]. RSC Advances, 2016, 6 (92): 89821- 89826.
doi: 10.1039/C6RA17446A
|
13 |
Jiang Xinbai, Shen Jinyou, Mu Yang, et al. Bioelectrodegradation of hazardous organic contaminants from industrial wastewater[M]//Wang Aijie, Liang Bin, Li Lingzhi, et al. Bioelectrochemistry stimulated environmental remediation: From bioelectrorespiration to bioelectrodegradation. New York: Springer, 2019: 93-119.
|
14 |
Feng Huajun , Zhang Xueqin , Liang Yuxiang , et al. Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system[J]. Water Research, 2014, 60, 54- 63.
doi: 10.1016/j.watres.2014.03.027
|
15 |
Xu Xiangyang , Gao Xinyi , Jin Jie , et al. A novel bioelectrode and anaerobic sludge coupled system for p-ClNB degradation by magnetite nanoparticles addition[J]. Environmental Science and Pollution Research, 2017, 24 (19): 16220- 16227.
doi: 10.1007/s11356-017-9047-9
|
16 |
De Vrieze J , Gildemyn S , Arends J B A , et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion[J]. Water Research, 2014, 54, 211- 221.
doi: 10.1016/j.watres.2014.01.044
|
17 |
Tian Yu , Li Hui , Li Lipin , et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64, 189- 195.
doi: 10.1016/j.bios.2014.08.070
|
18 |
Jiang Xinbai , Shen Jinyou , Han Yan , et al. Efficient nitro reduction and dechlorination of 2, 4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study[J]. Water Research, 2016, 88, 257- 265.
URL
|
19 |
Shen Jinyou , Xu Xiaopeng , Jiang Xinbai , et al. Coupling of a bioelectrochemical system for p-nitrophenol removal in an upflow anaerobic sludge blanket reactor[J]. Water Research, 2014, 67, 11- 18.
doi: 10.1016/j.watres.2014.09.003
|
20 |
Kong Fanying , Wang Aijie , Liang Bin , et al. Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system[J]. Bioresource Technology, 2013, 143, 669- 673.
doi: 10.1016/j.biortech.2013.06.050
|
21 |
Wu Zhenyu , Liu Yang , Wang Siyuan , et al. A novel integrated system of three-dimensional electrochemical reactors(3DERs) and threedimensional biofilm electrode reactors(3DBERs) for coking wastewater treatment[J]. Bioresource Technology, 2019, 284, 222- 230.
doi: 10.1016/j.biortech.2019.03.123
|
22 |
Wu Xiaoshuai, Qiao Yan. Bioelectrocatalysis favorable electrode materials for environmental remediation[M]//Wang Aijie, Liang Bin, Li Lingzhi, et al. Bioelectrochemistry stimulated environmental remediation: From bioelectrorespiration to bioelectrodegradation. New York: Springer, 2019: 23-45.
|
23 |
Chen Wufeng , Huang Yuxi , Li Daobo , et al. Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells[J]. RSC Advances, 2014, 4 (41): 21619- 21624.
doi: 10.1039/C4RA00914B
|
24 |
He Ziming , Liu Jing , Qiao Yan , et al. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell[J]. Nano Letters, 2012, 12 (9): 4738- 4741.
doi: 10.1021/nl302175j
|
25 |
Chen Shanshan , Tang Jiahuan , Jing Xianyue , et al. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting[J]. Electrochimica Acta, 2016, 212, 883- 889.
doi: 10.1016/j.electacta.2016.07.077
|
26 |
Karthikeyan R , Wang Bin , Xuan Jin , et al. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157, 314- 323.
doi: 10.1016/j.electacta.2015.01.029
|
27 |
Feng Chunhua , Ma Le , Li Fangbai , et al. A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt(PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25 (6): 1516- 1520.
URL
|
28 |
Wu Xiaoshuai , Shi Zhuanzhuan , Zou Long , et al. Pectin assisted onepot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells[J]. Journal of Power Sources, 2018, 378, 119- 124.
doi: 10.1016/j.jpowsour.2017.12.023
|
29 |
Beretta G , Mastorgio A F , Pedrali L , et al. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18 (1): 29- 75.
doi: 10.1007/s11157-018-09491-9
|
30 |
Chen Hui , Lu Donghui , Wang Caiqin , et al. Optimization of a bioelectrochemical system for 2, 4-dichloronitrobenzene transformation using response surface methodology[J]. RSC Advances, 2019, 9 (4): 2309- 2315.
doi: 10.1039/C8RA10110H
|
31 |
Zhang Jingli , Cao Zhanping , Zhang Hongwei , et al. Degradation characteristics of 2, 4-dichlorophenoxyacetic acid in electro-biological system[J]. Journal of Hazardous Materials, 2013, 262, 137- 142.
doi: 10.1016/j.jhazmat.2013.08.038
|
32 |
Zhang Xueqin , Feng Huajun , Shan Dan , et al. The effect of electricity on 2-fluoroaniline removal in a bioelectrochemically assisted microbial system(BEAMS)[J]. Electrochimica Acta, 2014, 135, 439- 446.
doi: 10.1016/j.electacta.2014.05.033
|
33 |
Chen Linlin , Shao Junjie , Chen Hui , et al. Cathode potential regulation in a coupled bioelectrode-anaerobic sludge system for effective dechlorination of 2, 4-dichloronitrobenzene[J]. Bioresource Technology, 2018, 254, 180- 186.
doi: 10.1016/j.biortech.2018.01.092
|
34 |
Chen Hui , Lu Donghui , Chen Linlin , et al. A study of the coupled bioelectrochemical system-upflow anaerobic sludge blanket for efficient transformation of 2, 4-dichloronitrobenzene[J]. Environmental Science and Pollution Research, 2019, 26, 13002- 13013.
doi: 10.1007/s11356-019-04751-9
|
35 |
Shen Lidong , Liu Shuai , Zhu Qun , et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 2014, 67 (2): 341- 349.
doi: 10.1007/s00248-013-0330-0
|
36 |
Liang Bin , Kong Deyong , Ma Jincai , et al. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification[J]. Water Research, 2016, 100, 157- 168.
doi: 10.1016/j.watres.2016.05.028
|
37 |
Zhao Jianguo , Chen Xiurong , Wang Lu , et al. Effects of elevated 4-chlorophenol loads on components of polysaccharides and proteins and toxicity in an activated sludge process[J]. Chemical Engineering Journal, 2017, 330, 236- 244.
doi: 10.1016/j.cej.2017.07.009
|
38 |
Xu Yingfeng , Ge Zhipeng , Zhang Xueqin , et al. Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems[J]. Environmental Pollution, 2019, 249, 794- 800.
doi: 10.1016/j.envpol.2019.03.036
|
39 |
吕红, 张甜甜, 张海坤, 等. 新型介体催化难降解污染物厌氧生物还原[J]. 环境科学与技术, 2016, 39 (1): 13- 18.
URL
|
40 |
Dai Ruobin , Chen Xiaoguang , Ma Chengyu , et al. Insoluble/immobilized redox mediators for catalyzing anaerobic bio-reduction of contaminants[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15 (3): 379- 409.
doi: 10.1007/s11157-016-9404-z
|
41 |
Van der Zee F P , Cervantes F J . Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review[J]. Biotechnology Advances, 2009, 27 (3): 256- 277.
doi: 10.1016/j.biotechadv.2009.01.004
|
42 |
李威, 崔岱宗, 何如宝, 等. 蒽醌类介体强化偶氮染料降解的研究进展[J]. 环境污染与防治, 2015, 276 (11): 106- 115.
URL
|
43 |
Curtis G P , Reinhard M . Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid[J]. Environmental Science & Technology, 1994, 28 (13): 2393- 2401.
URL
|
44 |
Schwarzenbach R P , Stierli R , Lanz K , et al. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution[J]. Environmental Science & Technology, 1990, 24 (10): 1566- 1574.
URL
|
45 |
Tratnyek P G , Scherer M M , Deng Baolin , et al. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron[J]. Water Research, 2001, 35 (18): 4435- 4443.
doi: 10.1016/S0043-1354(01)00165-8
|
46 |
Cervantes F J , van der Velde S , Lettinga G , et al. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J]. FEMS Microbiology Ecology, 2000, 34 (2): 161- 171.
doi: 10.1111/j.1574-6941.2000.tb00766.x
|
47 |
Cervantes F J , Dijksma W , Duong-Dac T , et al. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors[J]. Applied & Environmental Microbiology, 2001, 67 (10): 4471- 4478.
URL
|
48 |
Xi Zhenhua , Guo Jianbo , Lian Jing , et al. Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors[J]. Bioresource Technology, 2013, 140, 22- 27.
doi: 10.1016/j.biortech.2013.04.065
|
49 |
Liu Lecheng , Liu Guangfei , Zhou Jiti , et al. Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues[J]. RSC Advances, 2016, 6 (87): 84388- 84396.
doi: 10.1039/C6RA11671J
|
50 |
Suárez-Iglesias O , Collado S , Oulego P , et al. Graphene-family nanomaterials in wastewater treatment plants[J]. Chemical Engineering Journal, 2017, 313, 121- 135.
doi: 10.1016/j.cej.2016.12.022
|
51 |
Wang Jing , Zhang Haikun , Wang Di , et al. Effect of bioreduced graphene oxide on anaerobic biotransformation of nitrobenzene in an anaerobic reactor[J]. Environmental Technology, 2016, 37 (1): 39- 45.
doi: 10.1080/09593330.2015.1059492
|
52 |
Wang Jing , Lu Hong , Zhou Yan , et al. Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam[J]. Journal of Hazardous Materials, 2013, 252, 227- 232.
URL
|
53 |
Amezquita-Garcia H J , Rangel-Mendez J R , Cervantes F J , et al. Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol[J]. Chemical Engineering Journal, 2016, 286, 208- 215.
doi: 10.1016/j.cej.2015.10.085
|
54 |
Wang Jing , Wang Di , Liu Guangfei , et al. Enhanced nitrobenzene biotransformation by graphene-anaerobic sludge composite[J]. Journal of Chemical Technology & Biotechnology, 2014, 89 (5): 750- 755.
URL
|
55 |
Yan Fangfang , He Yanrong , Wu Chao , et al. Carbon nanotubes altethe electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2013, 1, 128- 132.
URL
|
56 |
Zhang ChunLian , Yu Yangyang , Fang Zhen , et al. Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria[J]. Process Biochemistry, 2018, 70, 129- 135.
doi: 10.1016/j.procbio.2018.04.019
|
57 |
García-Rodríguez J P , Amezquita-Garcia H J , Escamilla-Alvarado C , et al. Biofilm microbial composition changes due to different surface chemical modifications of activated carbon cloths in the biotransformation of 4-nitrophenol[J]. Biodegradation, 2019, 30, 401- 413.
doi: 10.1007/s10532-019-09880-z
|
58 |
Lu Hong , Zhang Haikun , Wang Jing , et al. A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological Acid Yellow 36 reduction[J]. RSC Advances, 2014, 4 (88): 47297- 47303.
doi: 10.1039/C4RA08817D
|
59 |
Fu Fenglian , Dionysiou D D , Liu Hong . The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267, 194- 205.
doi: 10.1016/j.jhazmat.2013.12.062
|
60 |
Farrell J , Kason M , Melitas N , et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J]. Environmental Science & Technology, 2000, 34 (3): 514- 521.
URL
|
61 |
张怡萍, 赵泉林, 崔立莉, 等. 零价铁在污水脱氮除磷方面的研究进展[J]. 工业水处理, 2016, 36 (12): 22- 26.
doi: 10.11894/1005-829x.2016.36(12).005
|
62 |
Lefevre E , Bossa N , Wiesner M R , et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron(nZVI): Behavior, transport and impacts on microbial communities[J]. Science of The Total Environment, 2016, 565, 889- 901.
doi: 10.1016/j.scitotenv.2016.02.003
|
63 |
Xu Yi , Wang Chao , Hou Jun , et al. Application of zero valent iron coupling with biological process for wastewater treatment: A review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16 (4): 667- 693.
doi: 10.1007/s11157-017-9445-y
|
64 |
Zhu Liang , Lin Haizhuan , Qi Jiaoqin , et al. Effect of H2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system[J]. Water Research, 2012, 46 (19): 6291- 6299.
doi: 10.1016/j.watres.2012.08.029
|
65 |
Zhu Liang , Lin Haizhuan , Qi Jiaoqin , et al. Enhanced transformation and dechlorination of p-chloronitrobenzene in the combined ZVI-anaerobic sludge system[J]. Environmental Science and Pollution Research, 2013, 20 (9): 6119- 6127.
doi: 10.1007/s11356-013-1631-z
|
66 |
Ou Changjin , Shen Jinyou , Zhang Shuai , et al. Coupling of iron shavings into the anaerobic system for enhanced 2, 4-dinitroanisole reduction in wastewater[J]. Water Research, 2016, 101, 457- 466.
doi: 10.1016/j.watres.2016.06.002
|
67 |
You Guoxiang , Wang Peifang , Hou Jun , et al. The use of zero-valent iron(ZVI)-microbe technology for wastewater treatment with special attention to the factors influencing performance: A critical review[J]. Critical Reviews in Environmental Science & Technology, 2017, 47, 877- 907.
|
68 |
Zhu Liang , Gao Kaituo , Jin Jie , et al. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system[J]. Environmental Science and Pollution Research, 2014, 21 (22): 12747- 12756.
doi: 10.1007/s11356-014-3215-y
|
69 |
Xu Xiangyang , Lin Haizhuan , Zhu Liang , et al. Enhanced biodegradation of 2-chloronitrobenzene using a coupled zero-valent iron column and sequencing batch reactor system[J]. Journal of Chemical Technology & Biotechnology, 2011, 86 (7): 993- 1000.
URL
|
70 |
Dinh H T , Kuever J , Mussmann M , et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427 (6977): 829- 832.
doi: 10.1038/nature02321
|
71 |
Wang Shangming , Tseng S K . Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron[J]. Journal of Bioscience and Bioengineering, 2009, 107 (3): 287- 292.
doi: 10.1016/j.jbiosc.2008.11.010
|
72 |
Ahmed M , Lin L S . Ferric reduction in organic matter oxidation and its applicability for anaerobic wastewater treatment: A review and future aspects[J]. Reviews in Environmental Science & Bio/Technology, 2017, 16 (2): 1- 15.
URL
|
73 |
Gerlach R , Cunningham A B , Caccavo F . Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal[J]. Environmental Science & Technology, 2000, 34 (12): 2461- 2464.
URL
|
74 |
Zhu Liang , Jin Jie , Lin Haizhuan , et al. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater[J]. Journal of Hazardous Materials, 2015, 285, 157- 166.
doi: 10.1016/j.jhazmat.2014.11.029
|
75 |
Liu Yiwen , Zhang Yaobin , Xie Quan , et al. Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures[J]. Bioresource Technology, 2011, 102 (3): 2578- 2584.
doi: 10.1016/j.biortech.2010.11.109
|
76 |
Ishii S , Suzuki S , Norden-Krichmar T M , et al. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer[J]. Nature Communications, 2013, 4, 1601- 1605.
doi: 10.1038/ncomms2615
|
77 |
Wang Dexin , Han Yuxing , Han Hongjun , et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257, 147- 156.
doi: 10.1016/j.biortech.2018.02.084
|