1 |
Shi Han , Chertow M , Song Yuyan . Developing country experience with eco-industrial parks: A case study of the Tianjin Economic-Technological Development Area in China[J]. Journal of Cleaner Production, 2010, 18 (3): 191- 199.
doi: 10.1016/j.jclepro.2009.10.002
|
2 |
李咏梅, 周琪. 工业园区污水治理的现状与发展方向[J]. 给水排水, 2016, 52 (3): 1- 3.
URL
|
3 |
国家统计局生态环境部. 中国环境统计年鉴[M]. 北京: 中国统计出版社, 2019: 10- 12.
|
4 |
黄天寅, 刘寒寒, 吴玮, 等. 城镇化背景下工业园区水污染控制研究[J]. 中国给水排水, 2013, 29 (22): 14- 17.
URL
|
5 |
Hu Wanqiu , Tian Jinping , Zang Na , et al. Study of the development and performance of centralized wastewater treatment plants in Chinese industrial parks[J]. Journal of Cleaner Production, 2019, 214, 939- 951.
doi: 10.1016/j.jclepro.2018.12.247
|
6 |
Ahmaruzzaman M , Gupta V K . Rice husk and its ash as low-cost adsorbents in water and wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2011, 50 (24): 13589- 13613.
|
7 |
董有, 陈文廷, 李武. A/O+MBR工艺处理石化产业园污水中试研究[J]. 工业安全与环保, 2016, 42 (12): 70- 72.
doi: 10.3969/j.issn.1001-425X.2016.12.021
|
8 |
厉炯慧, 翁珊, 方婧, 等. 浙江海宁电镀工业园区周边土壤重金属污染特征及生态风险分析[J]. 环境科学, 2014, 35 (4): 1509- 1515.
URL
|
9 |
谢志成, 赵文喜, 徐亚鹏, 等. 化学工业园区污水处理模式探讨[J]. 环境科学与技术, 2012, 35 (S2): 278- 281.
URL
|
10 |
Yuan Zengwei , Zhang Ling , Bi Jun . Which is more cost-effective? A comparison of two wastewater treatment models in China-Singapore Suzhou Industrial Park, China[J]. Journal of Cleaner Production, 2010, 18 (13): 1270- 1275.
doi: 10.1016/j.jclepro.2010.04.009
|
11 |
张强. 水解酸化在工业园区污水处理工程中的应用[J]. 中国给水排水, 2015, 31 (4): 14- 17.
URL
|
12 |
张景志. 洪泽工业园区废水处理技术及其运行管理策略研究[D]. 北京: 清华大学, 2017.
|
13 |
黄璐. 工业园区污水处理工艺选择[J]. 科技创新导报, 2019, 16 (7): 88- 90.
URL
|
14 |
马宗凯, 张鹏. CASS+微絮凝过滤在工业园区污水处理工程中的应用[J]. 环境工程, 2016, 34 (S1): 215- 219.
URL
|
15 |
朱兆亮, 崔山, 葛孝新, 等. 预氧化-MBR-反渗透工艺深度处理印染废水研究[J]. 工业水处理, 2017, 37 (5): 79- 82.
URL
|
16 |
李虹, 付乐. 印染工业园区废水深度处理技术研究进展[J]. 环境工程, 2014, 32 (11): 18- 21.
URL
|
17 |
Chang M R , Lee D J , Lai J Y . Nanoparticles in wastewater from a science-based industrial park-Coagulation using polyaluminum chloride[J]. Journal of Environmental Management, 2007, 85 (4): 1009- 1014.
doi: 10.1016/j.jenvman.2006.11.013
|
18 |
Shen Lu , Wang Wei , Li Tong , et al. Powdered activated coke for COD removal in the advanced treatment of mixed chemical wastewaters and regeneration by Fenton oxidation[J]. Chemical Engineering Journal, 2019, 371, 631- 638.
doi: 10.1016/j.cej.2019.04.086
|
19 |
李庆, 王志国, 丁士兵. 石化工业园区污水处理厂升级改造技术探讨[J]. 污染防治技术, 2016, 29 (2): 53- 58.
URL
|
20 |
刘锐, 程家迪, 余彬, 等. O3/BAC工艺深度处理某工业园区废水的效果[J]. 中国给水排水, 2012, 28 (15): 16- 20.
doi: 10.3969/j.issn.1000-4602.2012.15.005
|
21 |
陈思莉, 江栋, 虢清伟, 等. UASB+A/O+Fenton氧化处理工业园废水工程实例[J]. 工业水处理, 2014, 34 (4): 84- 85.
doi: 10.3969/j.issn.1005-829X.2014.04.024
|
22 |
许入义, 李孟, 谭斌, 等. 电镀工业园区废水处理工艺改造[J]. 中国给水排水, 2019, 35 (14): 101- 104.
URL
|
23 |
冯鸣凤, 谢志成, 何立坤, 等. 天津市《城镇污水处理厂污染物排放标准》对工业园区污水排放体系的影响[J]. 环境科学与技术, 2016, 39 (S2): 384- 387.
URL
|
24 |
Wu Xiaohong , Ge Xiaopeng , Wang Dongsheng , et al. Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347 (1/2/3): 56- 63.
URL
|
25 |
Alexander J T , Hai F I , Al-Aboud T M . Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential[J]. Journal of Environmental Management, 2012, 111, 195- 207.
URL
|
26 |
王东升, 刘海龙, 晏明全, 等. 强化混凝与优化混凝: 必要性、研究进展和发展方向[J]. 环境科学学报, 2006, (4): 544- 551.
doi: 10.3321/j.issn:0253-2468.2006.04.002
|
27 |
Gregory J , Barany S . Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169 (1): 1- 12.
doi: 10.1016/j.cis.2011.06.004
|
28 |
薛爽, 文杨, 铁梅, 等. 强化混凝对二级处理出水中溶解性有机物特性的影响[J]. 环境科学学报, 2013, 33 (8): 2199- 2208.
URL
|
29 |
Sun Yongjun , Zhou Shengbao , Chiang P C , et al. Evaluation and optimization of enhanced coagulation process: Water and energy nexus[J]. Water and Energy Nexus, 2019, 2 (1): 25- 36.
doi: 10.1016/j.wen.2020.01.001
|
30 |
毕传健, 马春燕, 刘振鸿. 强化混凝对集中式印染废水中溶解性有机污染物去除研究[J]. 水处理技术, 2017, 43 (6): 82- 86.
URL
|
31 |
Sun Yongjun , Ren Mengjiao , Zhu Chengyu , et al. UV-initiated graft copolymerization of cationic chitosan-based flocculants for treatment of zinc phosphate-contaminated wastewater[J]. Industrial & Engineering Chemistry Research, 2016, 55 (38): 10025- 10035.
URL
|
32 |
Sun Yongjun , Zhu Chengyu , Zheng Huaili , et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research and Design, 2017, 119, 23- 32.
doi: 10.1016/j.cherd.2017.01.009
|
33 |
刘冰, 郑煜铭, 王大祥, 等. 臭氧预氧化强化混凝对二级出水中DON作用机制探讨[J]. 环境科学, 2017, 38 (12): 5106- 5115.
URL
|
34 |
邱壮, 王锐, 金鹏康. 臭氧预氧化-混凝深度处理印染二级生化出水[J]. 印染, 2016, 42 (17): 15- 19.
URL
|
35 |
巴能军, 周志伟, 董俊, 等. 助滤和再生粉末活性炭吸附技术用于工业废水深度处理[J]. 给水排水, 2017, 53 (2): 71- 74.
doi: 10.3969/j.issn.1002-8471.2017.02.016
|
36 |
符丽纯, 戴建军, 陈利芳, 等. 基于树脂吸附的电镀废水深度处理工程实例[J]. 水处理技术, 2018, 44 (1): 128- 131.
URL
|
37 |
吴烈善, 李艺, 龚世枕, 等. 粉煤灰的改性及其在垃圾渗滤液深度处理中的应用研究[J]. 环境工程学报, 2012, 6 (2): 529- 534.
URL
|
38 |
蒋绪, 兰新哲, 宋永辉, 等. 酸改性兰炭基活性炭吸附焦化废水中COD研究[J]. 非金属矿, 2019, 42 (3): 96- 99.
doi: 10.3969/j.issn.1000-8098.2019.03.026
|
39 |
Xu Lili , Wang Jun , Zhang Xiaohui , et al. Development of a novel integrated membrane system incorporated with an activated coke adsorption unit for advanced coal gasification wastewater treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 99- 107.
URL
|
40 |
Li Wei , Mu Bingnan , Yang Yiqi . Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology[J]. Bioresource Technology, 2019, 277, 157- 170.
doi: 10.1016/j.biortech.2019.01.002
|
41 |
Huang Danlian , Li Bo , Ou Jing , et al. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors[J]. Journal of Environmental Management, 2020, 261, 109879.
doi: 10.1016/j.jenvman.2019.109879
|
42 |
Rigueto C V T , Piccin J S , Dettmer A , et al. Water hyacinth(Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions[J]. Ecological Engineering, 2020, 150, 105817.
doi: 10.1016/j.ecoleng.2020.105817
|
43 |
Ayoub K , van Hullebusch E D , Cassir M , et al. Application of advanced oxidation processes for TNT removal: A review[J]. Journal of Hazardous Materials, 2010, 178 (1/2/3): 10- 28.
URL
|
44 |
王恒成. 工业园区废水处理厂改造工艺的臭氧氧化试验[J]. 广东化工, 2019, 46 (23): 91- 96.
URL
|
45 |
Kasprzyk-Hordern B , Ziófek M , Nawrocki J . Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46 (4): 639- 669.
doi: 10.1016/S0926-3373(03)00326-6
|
46 |
肖华, 张棋, 许育新. 水处理均相催化臭氧氧化技术研究现状[J]. 水处理技术, 2009, 35 (7): 1- 4.
URL
|
47 |
王盈盈, 张晶, 潘立卫, 等. 臭氧催化氧化工艺处理工业废水的研究进展[J]. 应用化工, 2019, 48 (8): 1914- 1919.
doi: 10.3969/j.issn.1671-3206.2019.08.034
|
48 |
Wu Jin , Ma Luming , Chen Yunlu , et al. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways[J]. Water Research, 2016, 92, 140- 148.
doi: 10.1016/j.watres.2016.01.053
|
49 |
刘雪莲, 孙思涵, 徐朝萌, 等. UV/O3耦合氧化处理钢铁行业反渗透浓水[J]. 工业水处理, 2021, 1- 10.
|
50 |
胡兆吉, 孙洋, 陈建新, 等. UV/O3高级氧化工艺深度处理垃圾渗滤液的研究[J]. 工业水处理, 2017, 37 (11): 42- 45.
doi: 10.11894/1005-829x.2017.37(11).042
|
51 |
韩小刚, 韩立辉, 陈星, 等. AO/OAO/Fenton两级生物法处理工业园区内焦化废水[J]. 中国给水排水, 2019, 35 (2): 53- 57.
URL
|
52 |
Bello M M , Abdul Raman A A , Asghar A . A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment[J]. Process Safety and Environmental Protection, 2019, 126, 119- 140.
doi: 10.1016/j.psep.2019.03.028
|
53 |
Cetinkaya S G , Morcali M H , Akarsu S , et al. Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater[J]. Sustainable Environment Research, 2018, 28 (4): 165- 170.
doi: 10.1016/j.serj.2018.02.001
|
54 |
Zhang Menghui , Dong Hui , Zhao Liang , et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of The Total Environment, 2019, 670, 110- 121.
doi: 10.1016/j.scitotenv.2019.03.180
|
55 |
Babuponnusami A , Muthukumar K . A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2 (1): 557- 572.
doi: 10.1016/j.jece.2013.10.011
|
56 |
赵庆良, 黄慧彬, 丁晶, 等. 电Fenton技术的研究现状及应用进展[J]. 工业水处理, 2018, 38 (2): 6- 11.
URL
|
57 |
邓杰. Fenton反应的研究现状及前景分析[J]. 广州化工, 2014, 42 (16): 17- 19.
doi: 10.3969/j.issn.1001-9677.2014.16.006
|
58 |
南晓东. 膜技术在工业园区污水深度处理应用[J]. 山东化工, 2014, 43 (5): 202- 207.
URL
|
59 |
Juang L , Tseng D , Lin H . Membrane processes for water reuse from the effluent of industrial park wastewater treatment plant: A study on flux and fouling of membrane[J]. Desalination, 2007, 202 (1/2/3): 302- 309.
URL
|
60 |
刘彩锋, 刘中云, 胡云霞. 抗菌分离膜的构建策略及其发展方向[J]. 化学进展, 2017, 29 (11): 1395- 1406.
URL
|
61 |
Rahimpour A . UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties[J]. Desalination, 2011, 265 (1/2/3): 93- 101.
URL
|
62 |
He Meibo , Chen Chen , Guo Can , et al. Optimization of aeration conditions in the hybrid process of coagulation-ultrafiltration with air sparging[J]. Journal of Water Supply: Research and TechnologyAqua, 2017, 66 (8): 632- 640.
doi: 10.2166/aqua.2017.077
|
63 |
Huang Jian , Wang Zhiwei , Zhang Junyao , et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5 (1): 9268.
doi: 10.1038/srep09268
|
64 |
Wang Zhan , Li Yanling , Song Peng , et al. NaCl cleaning of 0.1μm polyvinylidene fluoride(PVDF) membrane fouled with humic acid (HA)[J]. Chemical Engineering Research and Design, 2018, 132, 325- 337.
doi: 10.1016/j.cherd.2018.01.009
|