1 |
Glaze W H . Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21 (3): 224- 230.
|
2 |
米记茹, 田立平, 刘丽丽, 等. 过硫酸盐活化方法的研究进展[J]. 工业水处理, 2020, 40 (7): 12- 17.
URL
|
3 |
蒲嘉懿. 金属有机骨架材料衍生物活化过一硫酸氢钾降解水体中污染物[D]. 广州: 华南理工大学, 2017.
|
4 |
Furman O S , Teel A L , Watts R J . Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44 (16): 6423- 6428.
URL
|
5 |
Fan Yan , Ji Yuefei , Kong Deyang , et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J]. Journal of Hazardous Materials, 2015, 300, 39- 47.
doi: 10.1016/j.jhazmat.2015.06.058
|
6 |
Zhu Linli , Ai Zhihui , Ho Wingkai , et al. Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange[J]. Separation & Purification Technology, 2013, 108, 159- 165.
URL
|
7 |
Zhang Mi , Chen Xiaoqing , Zhou He , et al. Degradation of p-nitrophenol by heat and metal ions co-activated persulfate[J]. Chemical Engineering Journal, 2015, 264, 39- 47.
doi: 10.1016/j.cej.2014.11.060
|
8 |
Xie Pengchao , Ma Jun , Liu Wei , et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69, 223- 233.
doi: 10.1016/j.watres.2014.11.029
|
9 |
Tang Lin , Liu Yani , Wang Jiajia , et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231, 1- 10.
doi: 10.1016/j.apcatb.2018.02.059
|
10 |
Ren Wei , Xiong Liangliang , Yuan Xuehong , et al. Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism[J]. Environmental Science & Technology, 2019, 53 (24): 14595- 14603.
URL
|
11 |
Govindan K , Raja M , Noel M , et al. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2014, 272, 42- 51.
doi: 10.1016/j.jhazmat.2014.02.036
|
12 |
Wu Simiao , Liang Guannan , Guan Xiaohong , et al. Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor[J]. Environment International, 2019, 131, 105024.
doi: 10.1016/j.envint.2019.105024
|
13 |
Zhang L , Ding W , Qiu J , et al. Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process[J]. Journal of Cleaner Production, 2018, 197 (1): 297- 305.
URL
|
14 |
Xu Xiangrong , Li Xiangzhong . Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 2010, 72 (1): 105- 111.
doi: 10.1016/j.seppur.2010.01.012
|
15 |
De Laat J , Le T G . Kinetics and modeling of the Fe(Ⅲ)/H2O2 system in the presence of sulfate in acidic aqueous solutions[J]. Environmental Science & Technology, 2005, 39 (6): 1811- 1818.
URL
|
16 |
Ramos M A V , Yan Weile , Li Xiaoqin , et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: Understanding the significance of the core-shell structure[J]. Journal of Physical Chemistry C, 2009, 113 (33): 14591- 14594.
doi: 10.1021/jp9051837
|
17 |
Liang Chenju , Su H W . Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48 (11): 5558- 5562.
URL
|
18 |
Miao Dongtian , Liu Guoshuai , Wei Qiuping , et al. Electro-activated persulfate oxidation of malachite green by boron-doped diamond (BDD) anode: Effect of degradation process parameters[J]. Water Science & Technology, 2020, 81 (5): 925- 935.
URL
|
19 |
Bu Lingjun , Zhu Shumin , Zhou Shiqing , et al. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors[J]. Chemosphere, 2018, 195, 236- 244.
doi: 10.1016/j.chemosphere.2017.12.088
|
20 |
Silveira J E , Garciacosta A L , Cardoso T O , et al. Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate[J]. Electrochimica Acta, 2017, 258 (20): 927- 932.
URL
|
21 |
Chen W S , Huang C P . Mineralization of aniline in aqueous solution by electrochemical activation of persulfate[J]. Chemosphere, 2015, 125, 175- 181.
doi: 10.1016/j.chemosphere.2014.12.053
|
22 |
Song Haoran , Yan Linxia , Jiang Jin , et al. Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?[J]. Water Research, 2018, 128 (1): 393- 401.
URL
|
23 |
Tsitonaki A , Petri B G , Crimi M , et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40 (1): 55- 91.
doi: 10.1080/10643380802039303
|
24 |
Mousset E , Oturan N , Oturan M A , et al. An unprecedented route of·OH radical reactivity evidenced by an electrocatalytical process: Ipso-substitution with perhalogenocarbon compounds[J]. Applied Catalysis B: Environmental, 2018, 226, 135- 146.
doi: 10.1016/j.apcatb.2017.12.028
|
25 |
Padmaja S , Alfassi Z B , Neta P , et al. Rate constants for reactions of SO4·-radicals in acetonitrile[J]. International Journal of Chemical Kinetics, 1993, 25 (3): 193- 198.
doi: 10.1002/kin.550250307
|
26 |
Sharma S B , Mudallar M , Rao B S , et al. Radiation chemical oxidation of benzaldehyde, acetophenone, and benzophenone[J]. Journal of Physical Chemistry A, 1997, 101 (45): 8402- 8408.
doi: 10.1021/jp9718717
|
27 |
George C H , El Rassy H , Chovelon J M . Reactivity of selected volatile organic compounds(VOCs) toward the sulfate radical(SO4·-)[J]. International Journal of Chemical Kinetics, 2001, 33 (9): 539- 547.
doi: 10.1002/kin.1049
|
28 |
李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展[J]. 化工进展, 2019, 38 (10): 4712- 4721.
URL
|
29 |
Yuan Songhu , Liao Peng , Alshawabkeh A N . Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater[J]. Environmental Science & Technology, 2014, 48 (1): 656- 663.
URL
|
30 |
Jeon P , Park S , Baek K , et al. Controlled release of iron for activation of persulfate to oxidize orange G using iron anode[J]. Korean Journal of Chemical Engineering, 2017, 34 (5): 1305- 1309.
doi: 10.1007/s11814-017-0062-9
|
31 |
Zheng Lei , Jin Hui , Yu Men , et al. Degradation of sulfamethoxazole by electrochemically activated persulfate using iron anode[J]. International Journal of Chemical Reactor Engineering, 2019, 17 (2): 20180160.
URL
|
32 |
Yu Yanghai , Zhou Shiqing , Bu Lingjun , et al. Degradation of diuron by electrochemically activated persulfate[J]. Water, Air, and Soil Pollution, 2016, 227 (8): 279.
doi: 10.1007/s11270-016-2978-9
|
33 |
Li Xue , Tang Shoufeng , Yuan Deling , et al. Improved degradation of anthraquinone dye by electrochemical activation of PDS[J]. Ecotoxicology and Environmental Safety, 2019, 177, 77- 85.
doi: 10.1016/j.ecoenv.2019.04.015
|
34 |
Song Haoran , Yan Linxia , Ma Jun , et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116, 182- 193.
doi: 10.1016/j.watres.2017.03.035
|
35 |
Cai Chun , Zhang Zhuoyue , Zhang Hui , et al. Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of OrangeⅡ[J]. Journal of Hazardous Materials, 2016, 313, 209- 218.
doi: 10.1016/j.jhazmat.2016.04.007
|
36 |
Li Jun , Yan Jianfei , Yao Gang , et al. Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation[J]. Chemical Engineering Journal, 2019, 361, 1317- 1332.
doi: 10.1016/j.cej.2018.12.144
|
37 |
Lin H , Wu J , Zhang H , et al. Degradation of clofibric acid in aqueous solution by an EC/Fe3+/PMS process[J]. Chemical Engineering Journal, 2014, 244 (15): 514- 521.
URL
|
38 |
Matzek L W , Tipton M , Faemer A T , et al. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement[J]. Environmental Science & Technology, 2018, 52 (10): 5875- 5883.
URL
|
39 |
Liu Zhen , Ding Haojie , Zhao Chun , et al. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential[J]. Water Research, 2019, 159, 111- 121.
doi: 10.1016/j.watres.2019.04.052
|
40 |
Nie Chunyang , Ao Zhimin , Duan Xiaoguang , et al. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process[J]. Chemosphere, 2018, 206, 432- 438.
doi: 10.1016/j.chemosphere.2018.04.173
|
41 |
Yuan Songhu , Liao Peng . Response to comment on "Electrolytic manipulation of persulfate reactivity by iron electrodes for TCE degradation in groundwater"[J]. Environmental Science & Technology, 2014, 48 (8): 4632- 4633.
|
42 |
Bu Lingjun , Zhou Shiqing , Shi Zhou , et al. Iron electrode as efficient persulfate activator for oxcarbazepine degradation: Performance, mechanism, and kinetic modeling[J]. Separation and Purification Technology, 2017, 178, 66- 74.
doi: 10.1016/j.seppur.2017.01.007
|
43 |
Li Jun , Ren Yi , Lai Leiduo , et al. Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2, 4-dinitrophenol in aqueous solution[J]. Journal of Hazardous Materials, 2018, 344, 778- 787.
doi: 10.1016/j.jhazmat.2017.11.007
|
44 |
Chen W , Jhou Y , Huang C , et al. Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation[J]. Chemical Engineering Journal, 2014, 252, 166- 172.
doi: 10.1016/j.cej.2014.05.033
|
45 |
Li Lianghao , Huang Zhuangpeng , Fan Xiaoxiao , et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochemical Acta, 2017, 231, 354- 362.
doi: 10.1016/j.electacta.2017.02.072
|
46 |
Xie Ruzhen , Meng Xiaoyang , Sun Peizhe , et al. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact[J]. Applied Catalysis B: Environmental, 2017, 203, 515- 525.
doi: 10.1016/j.apcatb.2016.10.057
|
47 |
Wang Kaixuan , Huang Dahong , Wang Weilai , et al. Enhanced perfluorooctanoic acid degradation by electrochemical activation of peroxymonosulfate in aqueous solution[J]. Environment International, 2020, 137, 105562.
doi: 10.1016/j.envint.2020.105562
|
48 |
Li Jing , Lin Heng , Zhu Kangmeng , et al. Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis[J]. Chemosphere, 2017, 188, 139- 147.
doi: 10.1016/j.chemosphere.2017.08.137
|
49 |
Evseev A K , Khubutiya M S , Goldin M M , et al. Electrochemical synthesis of peroxodisulfates from dilute sulfate solutions for detoxification of biological media[J]. Russian Journal of Electrochemistry, 2008, 44 (8): 901- 909.
doi: 10.1134/S1023193508080041
|
50 |
Goldin M M , Khubutiya M S , Kolesnikov V A , et al. Indirect electrochemical synthesis of active oxygen in dilute sulfate solutions[J]. Journal of Applied Electrochemistry, 2009, 39 (2): 185- 189.
doi: 10.1007/s10800-008-9652-x
|
51 |
Zhuo Qiongfang , Wang Jinbao , Niu Junfeng , et al. Electrochemical oxidation of perfluorooctane sulfonate(PFOS) substitute by modified boron doped diamond(BDD) anodes[J]. Chemical Engineering Journal, 2020, 379, 122280.
doi: 10.1016/j.cej.2019.122280
|
52 |
Davila O O , Bergeron L L , Gutierrez P R , et al. Electrochemical oxidation of dibenzothiophene compounds on BDD electrode in acetonitrile-water medium[J]. Journal of Electroanalytical Chemistry, 2019, 847 (15): 113172.
URL
|
53 |
Radjenovic J , Sedlak D L . Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49 (19): 11292- 11302.
URL
|
54 |
Farhat A , Keller J , Tait S , et al. Removal of persistent organic contaminants by electrochemically activated sulfate[J]. Environmental Science & Technology, 2015, 49 (24): 14326- 14333.
URL
|
55 |
Zhang Tao , Chen Yin , Wang Yuru , et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48 (10): 5868- 5875.
URL
|
56 |
Duan Xiaoguang , Ao Zhimin , Zhou Li , et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 188, 98- 105.
doi: 10.1016/j.apcatb.2016.01.059
|
57 |
Ding Jing , Bu Lingjun , Zhao Qingliang , et al. Electrochemical activation of persulfate on BDD and DSA anodes: Electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A[J]. Journal of Hazardous Materials, 2020, 388, 121789.
doi: 10.1016/j.jhazmat.2019.121789
|
58 |
Bu Lingjun , Ding Jing , Zhu Ningyuan , et al. Unraveling different mechanisms of persulfate activation by graphite felt anode and cathode to destruct contaminants of emerging concern[J]. Applied Catalysis B: Environmental, 2019, 253, 140- 148.
doi: 10.1016/j.apcatb.2019.04.030
|
59 |
Song Haoran , Yan Linxia , Jiang Jin , et al. Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes[J]. Chemical Engineering Journal, 2018, 344, 12- 20.
doi: 10.1016/j.cej.2018.03.050
|
60 |
Song Haoran , Yan Linxia , Wang Yuwei , et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation[J]. Chemical Engineering Journal, 2020, 391, 123560.
doi: 10.1016/j.cej.2019.123560
|