1 |
Sarasa J , Cortes S , Ormad P , et al. Study of the aromatic by-products formed from ozonation of anilines in aqueous solution[J]. Water Research, 2002, 36 (12): 3035- 3044.
doi: 10.1016/S0043-1354(02)00003-9
|
2 |
Levec J , Pintar A . Catalytic wet-air oxidation processes: A review[J]. Catalysis Today, 2007, 124 (3/4): 172- 184.
URL
|
3 |
Gomes H T , Machado B F , Ribeiro A , et al. Catalytic properties of carbon materials for wet oxidation of aniline[J]. Journal of Hazardous Materials, 2008, 159 (3/4): 420- 426.
URL
|
4 |
Morales-Torres S , Silva A M T , Maldonado-Hódar F J , et al. Pt-catalysts supported on activated carbons for catalytic wet air oxidation of aniline: Activity and stability[J]. Applied Catalysis B: Environmental, 2011, 105 (1/2): 86- 94.
URL
|
5 |
Song Mingguang , Wang Yunsong , Guo Yun , et al. Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2[J]. Chinese Journal of Catalysis, 2017, 38 (7): 1155- 1165.
doi: 10.1016/S1872-2067(17)62848-1
|
6 |
李祥, 杨少霞, 祝万鹏, 等. 碳纳米管催化湿式氧化苯酚和苯胺的研究[J]. 环境科学, 2008, 29 (9): 2522- 2527.
doi: 10.3321/j.issn:0250-3301.2008.09.023
|
7 |
Garcia J , Gomes H T , Serp P , et al. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation[J]. Carbon, 2006, 44 (12): 2384- 2391.
doi: 10.1016/j.carbon.2006.05.035
|
8 |
Gomes H T , Selvam P , Dapurkar S E . Transition metal(Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline[J]. Microporous and Mesoporous Materials, 2005, 86, 287- 294.
doi: 10.1016/j.micromeso.2005.07.022
|
9 |
Stüber F , Font J , Fortuny A , et al. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater[J]. Topics in Catalysis, 2005, 33, 3- 50.
doi: 10.1007/s11244-005-2497-1
|
10 |
Liu Yucan , Zhang Guangming , Fang Shunyan , et al. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst[J]. Journal of Environmental Management, 2016, 182, 367- 373.
doi: 10.1016/j.jenvman.2016.07.084
|
11 |
Anotai J , Su C C , Tsai Y C , et al. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes[J]. Journal of Hazardous Materials, 2010, 183 (1/2/3): 888- 893.
URL
|
12 |
Anotai J , Su C C , Tsai Y C , et al. Comparison of aniline oxidation by electro-Fenton and fluidized-bed Fenton processes[J]. Journal of Environment Engineering, 2011, 137 (5): 363- 370.
doi: 10.1061/(ASCE)EE.1943-7870.0000325
|
13 |
Zhang Shengxiao , Zhao Xiaoli , Niu Hongyun , et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167 (1/2/3): 560- 566.
URL
|
14 |
李业文. 硝基苯类及苯胺类高浓污水处理工程实践[J]. 建筑工程技术与设计, 2018, (32): 1645- 1646.
|
15 |
Zhou Guanliang , Zhou Li , Sun Hongqi , et al. Carbon microspheres supported cobalt catalysts for phenol oxidation with peroxymonosulfate[J]. Chemical Engineering Research and Design, 2015, 101, 15- 21.
doi: 10.1016/j.cherd.2015.07.009
|
16 |
Zhu Junyi , Chen Cheng , Li Yuxin , et al. Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide[J]. Separation and Purification Technology, 2019, 209, 1007- 1015.
doi: 10.1016/j.seppur.2018.09.055
|
17 |
Li Li , Huang Jun , Hu Xuebin , et al. Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species[J]. Chemosphere, 2019, 215, 647- 656.
doi: 10.1016/j.chemosphere.2018.10.047
|
18 |
Buthiyappan A , Abdul Aziz A R , Wan Daud W M A . Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents[J]. Review in Chemical Engineering, 2016, 32 (1): 1- 7.
doi: 10.1515/revce-2015-0034
|
19 |
Esmaili-Hafshejani J , Nezamzadeh-Ejhieh A . Increased photocatalytic activity of Zn(Ⅱ)/Cu(Ⅱ) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution[J]. Journal of Hazardous Materials, 2016, 316, 194- 203.
doi: 10.1016/j.jhazmat.2016.05.006
|
20 |
Huang Qianqian , Zhang Jiayin , He Zhengyu . Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation[J]. Chemical Engineering Journal, 2017, 313, 1088- 1098.
doi: 10.1016/j.cej.2016.11.002
|
21 |
Qin Xin , Fang Shuwen , Zhao Lei , et al. Cobalt super-microparticles anchored on nitrogen-doped graphene for aniline oxidation based on sulfate radicals[J]. Science of the Total Environment, 2017, 601/602, 99- 108.
doi: 10.1016/j.scitotenv.2017.05.198
|
22 |
Faria P C C , órfao J J M , Pereira M F R . Ozonation of aniline promoted by activated carbon[J]. Chemosphere, 2007, 67, 809- 815.
doi: 10.1016/j.chemosphere.2006.10.020
|
23 |
Goncalves A , Silvestre-Albero J , Ramos-Fernández E V . Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants[J]. Applied Catalysis B: Environmental, 2012, 113/114, 308- 317.
doi: 10.1016/j.apcatb.2011.11.052
|
24 |
Zhang Jing , Wu Yao , Qin Chao . Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc[J]. Chemosphere, 2015, 141, 258- 264.
doi: 10.1016/j.chemosphere.2015.07.066
|
25 |
徐雪璐, 蒋云飞, 金琪, 等. Mn-Ce负载型催化剂催化臭氧氧化苯胺实验研究[J]. 工业水处理, 2019, 39 (3): 54- 58.
URL
|
26 |
Kasprzyk-Hordern B , Ziólek M , Nawrocki J . Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46 (4): 639- 669.
doi: 10.1016/S0926-3373(03)00326-6
|
27 |
Jiao Weizhou , Qiao Jingjuan , Qin Yuejiao , et al. Effects of coexisting substances on aniline degradation with ozone-based advanced oxidation process in high-gravity fields[J]. Chemical Engineering & Processing: Process Intensification, 2019, 138, 36- 40.
URL
|
28 |
Li Xiaoliang , Shao Dan , Xu Hao , et al. Fabrication of a stable Ti/TiOxHy/Sb-SnO2 anode for aniline degradation in different electrolytes[J]. Chemical Engineering Journal, 2016, 285, 1- 10.
doi: 10.1016/j.cej.2015.09.089
|
29 |
Li Xiaoliang , Xu Hao , Yan Wei . Electrocatalytic degradation of aniline by Ti/Sb-SnO2, Ti/Sb-SnO2/Pb3O4 and Ti/Sb-SnO2/PbO2 anodes in different electrolytes[J]. Journal of Electroanalytical Chemistry, 2016, 775, 43- 51.
doi: 10.1016/j.jelechem.2016.05.033
|
30 |
Panizza M , Michaud P A , Cerisola G , et al. Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes[J]. Electrochemistry Communications, 2001, 3 (7): 336- 339.
doi: 10.1016/S1388-2481(01)00166-7
|
31 |
Karthikeyan S , Viswanathan K , Boopathy R . Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon[J]. Journal of Industrial and Engineering Chemistry, 2015, 21, 942- 950.
doi: 10.1016/j.jiec.2014.04.036
|
32 |
Duan Xiaoyue , Chen Yawen , Liu Xinyue , et al. Synthesis and characterization of nanometal-ordered mesoporous carbon composites as heterogeneous catalysts for electrooxidation of aniline[J]. Electrochimica Acta, 2017, 251, 270- 283.
doi: 10.1016/j.electacta.2017.08.118
|
33 |
Su C C , Pagaling E D , Peralta G L . Comparison of aniline degradation by Fenton and electro-Fenton reactors using plate and rod electrodes[J]. Environmental Progress & Sustainable Energy, 2013, 32 (4): 1111- 1117.
URL
|
34 |
Su C C , Pagaling E D , Genandrialine L . Degradation of aniline by plate and rod electrode fered-Fenton reactors: Effects of current density, Fe2+, H2O2, and aniline concentrations[J]. Environmental Progress & Sustainable Energy, 2014, 33 (2): 410- 418.
URL
|
35 |
姚迎迎, 唐琪玮, 黄磊. BDD电化学氧化技术对工业废水的处理[J]. 净水技术, 2018, 37 (S1): 119- 123.
URL
|
36 |
Li Xiaolian , Xu Hao , Yan Wei . Electrochemical oxidation of aniline by a novel Ti/TiOxHy/Sb-SnO2 electrode[J]. Chinese Journal of Catalysis, 2016, 37 (11): 1860- 1870.
doi: 10.1016/S1872-2067(16)62555-X
|
37 |
Yu Xiaoying , Barker J R . Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions.Ⅱ. Quantum yield of·OH(aq) radicals[J]. Journal of Physical Chemistry A, 2003, 107, 1313- 1324.
doi: 10.1021/jp0266648
|
38 |
Zabihi-Mobarakeh H , Nezamzadeh-Ejhieh A . Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 26, 315- 321.
doi: 10.1016/j.jiec.2014.12.003
|
39 |
Szczepanik B , Slomkiewicz P . Photodegradation of aniline in water in the presence of chemically activated halloysite[J]. Applied Clay Science, 2016, 124/125, 31- 38.
doi: 10.1016/j.clay.2016.01.045
|
40 |
Pirsaheb M , Shahmoradi B , Beikmohammadi M , et al. Photocatalytic degradation of Aniline from aqueous solutions under sunlight illumination using immobilized Cr: ZnO nanoparticles[J]. Scientific Reports, 2017, 7 (1): 1473.
doi: 10.1038/s41598-017-01461-5
|
41 |
Durán A , Monteagudo J M , San Martín I , et al. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation[J]. Journal of Environmental Management, 2018, 210, 122- 130.
URL
|
42 |
高金龙, 赵文婕, 谷娜. ClO2氧化-可见光催化联合处理苯胺废水的研究[J]. 工业水处理, 2012, 32 (10): 57- 60.
URL
|